2019年3月 Mar. 2019

文章编号:1672-3317(2019)03-0028-07

基于温度植被干旱指数的土壤水分空间变异性分析

马春芽1,2, 王景雷3, 陈震1, 殷欢庆4, 陈勇5, 黄修桥1*

(1. 中国农业科学院农田灌溉研究所节水农业重点实验室,河南 新乡 453002;

2. 中国农业科学院研究生院,北京100081; 3. 中国农业科学院农田灌溉研究所

农业部作物需水与调控重点开放实验室,河南新乡453002;

4. 河南省人民胜利渠管理局获嘉管理处,河南 新乡 453003; 5. 山东省兰陵县水利局,山东临沂 277700)

摘要:【目的】深入探讨区域土壤水分空间变异及其尺度效应,优化灌区尺度土壤水分采样精度,并提供合理采 样方案。【方法】以人民胜利渠灌区为研究区,利用Landsat8遥感影像,构建了温度植被干旱指数,根据其与土壤 水分的相关关系获得研究区土壤水分分布。利用经典统计学和地统计学分析方法对2种尺度下土壤水分分布进 行了空间变异性分析。【结果】不同尺度土壤水分服从正态分布,随着研究尺度和分辨率的增大,土壤水分的空间 变异系数逐步增大;地统计学分析表明小尺度的块金基台比(C₀(C₀+C))小于0.25,具有较强的空间相关性,而灌 区尺度的块金基台比大于0.25小于0.75,具有中等强度的空间相关性。灌区尺度所选不同分辨率下土壤水分的 变异系数、变程以及块金基台比变化很小。【结论】人民胜利渠灌区尺度土壤水分的获取不适宜用插值法,比较适 宜用遥感法。

关键词:温度植被指数;土壤水分;空间变异中图分类号:S152.7文献标志码:Adoi:10.13522/j.cnki.ggps.20170036

马春芽,王景雷,陈震,等.基于温度植被干旱指数的土壤水分空间变异性分析[J].灌溉排水学报,2019,38(3):28-34.

0引言

土壤水分是大气和下垫面之间进行能量交换的关键因子,同时也是反映植物耗水特征的典型指标^{III}。然而,由于土壤具有高度空间变异性^{I2I},使传统取样或监测法难以准确获取区域土壤水分参数。遥感技术的发展有效解决了这一难题。基于遥感技术反演土壤水分参数的相关研究较多,其中由植被指数和地表温度构建的温度植被干旱指数(Temperature Vegetation Dryness Index,*TVDI*)是目前应用最广泛的一种反演土壤水分方法^{I3-3I}。Son等^{I0I}利用 MODIS 产品数据通过构建*TVDI*和作物水分胁迫指数(Crop Water Stress Index,*CWSI*)反演获得土壤水分并与实测值进行对比,结果表明*TVDI*比*CWSI*对土壤水分的反映更敏感。李红军等^{I7I}利用 Landsat 5 TM 数据对研究遥感影像空间分辨率对 MODIS 数据构成的*TVDI* 特征空间的影响,对不符合特征空间法应用的畸变进行了校正或避开。在实际应用中构建*TVDI*的植被指数采用最多的是*NDVI*,但研究表明*NDVI*在高植被覆盖度时存在红光饱和问题,影响*TVDI*监测土壤水分的准确性^[8-10]。兹利用增强型植被指数*EVI*构建*TVDI*可以改善*NDVI*在高植被区域易饱和的问题。

土壤水分空间变异的研究对提高农业用水效率以及改善农业灌溉决策具有一定参考价值。目前,有 关土壤水分空间变异特性的研究主要集中在不同土壤质地^[11]、不同土壤深度^[12]以及单一田块^[13]的小尺度方 面,而关于区域尺度土壤水分空间变异性的研究较少,主要受到监测手段的限制^[14]。而通过遥感影像与实 测土壤水分参数结合,可以获取区域尺度土壤水分状况,从而为区域以及更大尺度土壤水分空间变异性分 析提供了可能。

收稿日期: 2017-12-11

基金项目:国家重点研发计划项目(2016YFC0400104);"十二五"国家科技计划农村领域课题(2014BAD12B05)

作者简介:马春芽(1988-),女,河南辉县人。博士研究生,研究方向为节水灌溉以及农业遥感。 E-mail: chunya_ma@outlook.com 通信作者:黄修桥(1961-),男。研究员,研究方向为农业水资源高效利用。E-mail: huangxq626@126.com

以人民胜利渠灌区为研究区,基于Landsat 8 遥感影像,选择冬小麦生长旺盛期的5月为典型时间点, 选取增强型植被指数 EVI 和地表温度 LST 构建 TVDI 指数。将计算获得的 TVDI 与实测的土壤水分数据进 行线性拟合获得灌区区域的土壤水分数据,从而利用经典统计学和地统计学理论对不同尺度下人民胜利 渠灌区土壤水分空间变异性进行研究。以期为区域旱情监测以及区域土壤水分空间变异制定合理采样方 案提供一定参考。

1 材料和方法

1.1 研究区概况

人民胜利渠灌区位于河南省北部,黄河、沁河冲积平原,主要包括新乡县、获嘉县和延津县3县,地势 平坦。灌区灌溉面积9.92万hm²,是河南省冬小麦主产区之一。本地区属于中纬度季风气候,年均降雨量 548.3 mm,年均蒸发量1908.7 mm,多年平均气温14.1℃,日照时间达2398.8 h,无霜期200.5 d。研究区以 粉壤土为主,通过BT-9300Z型激光粒度分布仪测定,黏粒量为6.67%,粉粒量为71.79%,砂粒量为 21.54%。研究区示意图如图1所示。

1.2 数据源和预处理

遥感数据来自于USGS EarthExplorer网(http://earthexplorer.usgs.gov),选用的数据为2014年5月6日 Landsat 8 1T 数据,天气晴朗,遥感影像无云影响。人民胜利渠灌区遥感影像为两景覆盖,行列号分别为 124/35和124/36。利用ENVI软件对遥感影像进行辐射校正和大气校正,采用最邻近采样法拼接两景影 像,最后利用人民胜利渠灌区的边界图裁剪,获得研究区的遥感影像。利用ENVI软件中波段计算工具分 别计算植被指数、地表温度,从而构建植被指数-地表温度特征空间计算温度植被干旱指数。

实测的土壤水分数据日期为2014年5月5—6日,即接近卫星过境时间,取样深度分别为0~20、20~40、40~60、60~80和80~100 cm,采用烘干法测定土壤质量含水率。每个采样点距离道路、树木和其他地表反射率强的物体的距离至少为30m(Landsat 8 的空间分辨率为30m),且每个采样点重复采样3次。对每个采样点,利用GPS进行经纬度的定标。采样点的空间分布如图2所示。

1.3 研究尺度确定

研究尺度分2种,一种是随机选取灌区的一部分,分辨率为30m,采样幅宽分别为270m×290m、1600m×1400m和7450m×7840m,定义为小尺度,用S30_1、S30_2和S30_3表示;另一种是整个灌区区域采样幅宽,定义为大尺度,利用最邻近重采样方法,将灌区的土壤水分数据进行分辨率分别为90、250和1000m的重采样,分别用L90、L250和L1000表示。进而研究不同尺度以及同一尺度不同分辨率下的土壤水分空间变异性。1.4 温度植被干旱指数计算

1.4.1 植被指数

选用增强型植被指数EVI来构建温度植被干旱指数TVDI。增强型植被指数EVI具体计算式为:

$$EVI = G \frac{\rho_{\text{NIR}} - \rho_{\text{RED}}}{\rho_{\text{NIR}} + C_1 \times \rho_{\text{RED}} - C_2 \times \rho_{\text{BLUE}} + 1} , \qquad (1)$$

式中: ρ_{NIR} 、 ρ_{RED} 和 ρ_{BLUE} 分别为Landsat 8数据近红波段(0.845~0.885 µm)、红波段(0.630~0.680 µm)和蓝波 段(0.450~0.515 µm)的反射率。G是增益系数,G=2.5。C₁和C₂是红蓝波段消除大气气溶胶作用的系数,

 $C_1 = 6.0, C_2 = 7.5$.

1.4.2 地表温度

利用辐射传输方程 RET 获取遥感影像地表温度,RET 的基本原理是太阳辐射远小于地面的辐射⁽⁴⁾,卫 星传感器获得的热红外辐射亮度值由3部分组成:地面的真实辐射亮度经过大气层之后到达卫星传感器 的能量、大气向上辐射亮度、大气向下辐射到达地面后反射的能量。卫星传感器获得的辐射值计算式为:

$$L_{\lambda} = \left[\varepsilon \times B(T_s) + (1 - \varepsilon)L \downarrow \right] \tau + L \uparrow , \qquad (2)$$

式中: L_λ 为卫星传感器获得的辐射亮度(W/(m²· μ m·sr)),; τ 为大气透过率; ε 为地表辐射率; $L \downarrow$ 为向下辐射亮度值; $L \uparrow$ 为向上辐射亮度值; $\tau \downarrow \Lambda L \uparrow$ 也被称为大气校正参数。 $B(T_s)$ 为在温度为 T_s 时的黑体辐射亮度值。因此, $B(T_s)$ 可以用下式表示:

$$B(T_{\rm s}) = \frac{\left[L_{\lambda} - L \uparrow -\tau(1 - \varepsilon)L \downarrow\right]}{\tau\varepsilon} \,. \tag{3}$$

大气校正参数 τ 、L \downarrow 和L \uparrow 由 NASA 大气校正参数计算器获得^[15-16]。地表辐射率 ε 利用简化的 NDVI 阈值法—NDVITHM ^[17]计算得到。利用普朗克函数的反函数从黑体辐射亮度 $B(T_s)$ 获得*LST*:

$$T_{\rm s} = K_2 / \ln \left(K_1 / B(T_{\rm s}) + 1 \right) \,, \tag{4}$$

$$LST = T_s - 273.15$$
, (5)

式中: T_s 为地表温度(K);LST为地表温度(℃); K_1 和 K_2 为卫星的校准常数,对于Landsat 8 热红外波段10而言, K_1 =774.89(W/(m²·µm·sr)), K_2 =1 321.08 K。

1.4.3 温度植被干旱指数

温度植被干旱指数的计算式为:

$$TVDI = \frac{LST - LST_{\min}}{LST_{\max} - LST_{\min}} , \qquad (6)$$

$$LST_{\min} = a_{\min} + b_{\min} EVI , \qquad (7)$$

$$LST_{\max} = a_{\max} + b_{\max} EVI , \qquad (8)$$

式中:LST是由遥感影像获得的每个像素的地表温度;LSTmin和LSTmax分别是对于一个特定的EVI值最小和最大的地表温度;amin、bmin、amax和bmax是湿边方程和干边方程的拟合参数。

TVDI的求算是以LST/VI特征空间为基础的(VI为植被指数),基于研究区内土壤表层有效含水率在萎蔫含水率和田间持水率之间的限定条件,其基本原理如图3所示。TVDI值越小土壤含水率越大,反之亦然。

图 3 TVDI 特征空间及原理图

干边和湿边是界定特征空间散点图上下边界的直线, VI值的范围是 0~1。然后以 0.01+0.02n(n=1, 2,…)为中心, 取 0.02 宽度的区间中 T₆的最大值和最小值, 分别与其对应的 VI值组成点对, 最后采用最小 二乘线性拟合的方式将点对拟合, 形成干边和湿边。此过程采用 IDL 语言编写, 自动提取干湿边。

2 结果与分析

2.1 区域土壤水分

利用式(6)一式(8)构建LST/EVI特征空间,提取相同EVI下不同像元所对应的LST的最大值和最小

值,通过回归分析拟合获得干边和湿边方程,即式(7)和式(8),结果如图4所示。由图4可知,LST/EVI构成的特征空间近似呈三角形,湿边的斜率大于0,干边的斜率小于0,即随着植被指数增加,LST的最大值呈减小趋势,LST的最小值呈增大趋势。

图4 LST和EVI组成的特征空间图

通过田间采样获得实测点的经纬度数据提取相应的TVDI,与实测点不同深度的土壤水分进行回归分析,结果如图5所示。从图5可以看出,TVDI与不同深度土壤水分表现为TVDI值越大,土壤含水率越低的负相关关系。同时,0~20 cm 土层深度的土壤水分与TVDI的相关性明显高于其他土层,说明TVDI对表层 土壤水分较为敏感,能更好地反演表层土壤水分。

图5 不同深度土壤水分与LST-EVI的回归分析

采用 TVDI与 0~20 cm 拟合获得的线性关系,反演得到 2014年5月6日人民胜利渠灌区的区域 0~20 cm 表层土壤水 分,如图6所示。从图6可以看出,人民胜利渠灌区大部分地 区的土壤含水率>15%。人民胜利渠灌区冬小麦每年通常灌 溉3次,分别在冬小麦的返青、拔节和灌浆期^[18-19]。5月6日是 该灌区冬小麦的灌浆初期,这一时间是农民灌溉的时期,因 此,土壤含水率较高。

对于利用LST-EVI获得的0~20 cm 土壤水分,利用2015年 4月23日获取的Landsat8遥感影像进行遥感反演结果的验证。以统计学上的相对误差和平均相对误差为检验标准, LST-EVI特征空间反演的土壤水分的平均值与实际值很接近, 平均相对误差为15%。

图6反演得到0~20 cm土壤水分的空间分布

2.2 区域 0~20 cm 表层土壤水分空间变异性

2.2.1 不同尺度0~20 cm土壤水分的描述性统计特征

不同分辨率0~20 cm深度处的土壤含水率进行统计分析,其土壤水分统计特征值见表1。

尺度	样本数/个	极小值/%	极大值/%	均值/%	标准差	方差	变异系数	偏度	峰度
S30_1	90	16.99	21.35	19.28	1.10	1.20	0.06	-0.03	-0.99
S30_2	2 688	4.71	22.3	19.228	2.08	4.31	0.11	-2.23	8.74
S30_3	61 651	0	22.36	15.976	5.29	28.01	0.33	-1.51	1.79
L90	234 643	0	22.36	13.084	5.89	34.66	0.45	-0.56	-0.77
L250	30 708	0	25.81	12.968	5.94	35.25	0.46	-0.54	-0.80
L1000	1 923	0	24.39	12.791	5.99	35.85	0.47	-0.52	-0.84

表1 0~20 cm 深度土壤水分统计特征值

由表1可知,分辨率下土壤水分均服从正态分布。土壤水分的变异系数反映了各个尺度土壤含水率 样本的离散程度。一般变异系数小于0.1的为弱变异性,变异系数大于1的为强变异性,而变异系数大于 0.1小于1的为中等变异^[20]。由表1可知,S30_1的土壤水分表现为弱变异性,其他均表现为中等变异,且随 着面积的增大和分辨率的增大,变异系数有增大的趋势,但对于整个灌区尺度,变异系数随分辨率的变化 很小。

2.2.2 0~20 cm 土壤水分的半方差函数分析

土壤水分的空间变异性具有一定的空间结构性特征,变异尺度会随着研究尺度的变化而变化。在利用前文得到的人民胜利渠灌区 0~20 cm 表层土壤水分的基础上,研究不同种尺度以及同一尺度不同采样分辨率在二维平面上的空间变异结构特性。利用 GS+软件对不同尺度的土壤水分数据进行统计分析,计算其半方差函数值并得到半方差模型参数(表2),从而对土壤水分空间变异性进行进一步描述。

尺度	理论模型	块金值(C₀)	基台值(C₀+C)	变程/m	残差	决定系数(R ²)	块金基台比(C ₀ /(C ₀ +C))	
S30_1	指数	0.001	2.011	120.4	0.127	0.99	0.000 5	
S30_2	指数	0.01	4.404	171	0.56	0.969	0.002 3	
S30_3	指数	0.7	27.42	340	7.76	0.959	0.025 5	
L90	指数	17.75	35.51	2 660	15.5	0.781	0.50	
L250	指数	18.03	36.07	2 610	16.7	0.762	0.50	
L1000	指数	18.33	36.67	2 470	14.0	0.779	0.50	

表2不同研究尺度及不同采样分辨率下土壤水分的半方差函数理论模型及其相关参数

块金基台比表示随机因素引起的空间异质性占系统总变异的比例,小于0.25表明系统变量具有较强的空间相关性,大于0.75表明具有较弱的空间相关性,大于0.25小于0.75则具有中等强度的空间相关性^[21]。由表2可知,S30_1、S30_2和S30_3块金基台比小于0.25,L90、L250和L1000的块金基台比大于0.25小于0.75。说明小尺度表层土壤水分具有较强的空间相关性,而L90、L250和L1000的区域尺度表层土壤水分的空间相关性比小尺度弱。同时,块金基台比在区域尺度不同分辨率下几乎不变,这个固定值可能就是研究区域内0~20 cm深土层土壤含水率真实的变异。另外,对于分辨率为30 m随机选取的面积不等的3个采样区域,块金值、基台值和变程明显随面积的增大而增大;而对于整个灌区尺度,不同分辨率块金值、基台值和变程虽然也有增大的趋势,但表现不明显。

3 讨 论

在前人研究的基础上选用 EVI作为构建 TVDI特征空间的植被指数。通过比较 TVDI与不同深度土层 土壤含水率的关系,得出 TVDI与0~20 cm土壤水分的关系最密切。王秀君等^[22]基于 Landsat TM 数据,利 用 LST 和 EVI构建特征空间,计算得到的 TVDI与实测土壤水分进行回归分析,也得到与0~20 cm土壤含水 率具有较好的线性关系。因此,利用 TVDI与0~20 cm 土层土壤含水率的关系获得人民胜利渠灌区土壤水 分。在此基础上对区域土壤水分空间变异性进行研究。

研究表明,土壤水分采样密度越大,越能反映真实的空间变异^[23-24]。但受土壤水分测定人力物力费用 的影响,大采样密度区域尺度土壤水分的获取受到限制。遥感技术的应用解决了这一问题。因此分析不 同尺度不同分辨率(采样密度)下土壤水分空间变异,具有现实意义。随机选取面积不等(S30_1<S30_2<S30_3)的几个小区作为小尺度,整个灌区作为大尺度研究不同尺度以及同一尺度不同分辨率下土壤水分的空间变异性。研究结果表明,对于整个灌区变异系数、块金值、基台值、变程以及块金基台比不受分辨率的影响,这与前人研究结果^[25-26]一致。土壤水分的空间变异性主要由2部分组成,一部分是土壤自身的结构特性,如母质、地形、颗粒级配组成等;一部分是随机性因素,如降雨、气候、人类活动等外部环境的影响^[27]。利用经典统计学和地统计学分析本研究获得的表层土壤水分可知,L90、L250和L1000的变异系数和块金基台比与S30_1、S30_2和S30_3相比都较大,说明L90、L250和L1000表层土壤水分的空间变异性比S30_1、S30_2和S30_3大,且空间变异主要由随机性因素造成。而S30_1、S30_2和S30_3空间变异性主要由土壤母质、地形、颗粒级配等因素形成。兹主要研究了区域表层土壤水分的空间变异性,对于根区即深层区域土壤水分空间变异性会在今后做进一步的研究。

4 结 论

1)*TVDI*和不同深度的土壤水分呈负相关关系,并与表层土壤水分(0~20 cm)的相关关系最大,表明遥感数据对表层土壤水分比较敏感。

2)经典统计学分析结果表明,S30_1的土壤水分表现为弱变异性,其他均表现为中等变异,且对于同一分辨率随机选取的面积不等的3个样区,随着面积的增大和分辨率的增大,变异系数有增大的趋势,但对于整个灌区尺度,变异系数随分辨率的变化很小。

3)通过半方差分析,S30_1、S30_2和S30_3的表层土壤水分具有较强的空间相关性,而L90、L250和L1000的表层土壤水分具有中等强度的空间相关性。说明随着研究尺度的增大,表层土壤水分的空间相关性逐渐减弱,随机因素引起的空间变异逐渐占主导地位。从而也间接说明,小尺度下表层土壤水分可以利用空间插值获取,对于大尺度即区域表层土壤水分遥感反演是更好的选择。

参考文献:

- [1] 夏燕秋,马金辉,屈创,等.基于Landsat ETM+数据的白龙江流域土壤水分反演[J].干旱气象,2015,33(2):213-219.
- [2] 李丽梅,胡华.网格尺度上宁夏平原区土壤水分入渗空间变异性分析[J].灌溉排水学报,2015,34(8):49-54.
- [3] 郭瑞宁,郭青霞,冯雨豪,等.基于TVDI的土壤湿度时空分布及影响因子分析[J].灌溉排水学报,2018,37(4):52-58.
- [4] GUO Z, WANG S D, CHENG M M, et al. Assess the effect of different degrees of urbanization on land surface temperature using remote sensing images[J]. Procedia Environmental Sciences. 2012(13): 935-942.
- [5] FU P, WENG Q H. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery[J]. Remote Sensing of Environment. 2016 (175): 205-214.
- [6] SON N T, CHEN C F, CHEN C R, et al. Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data[J]. International Journal of Applied Earth Observation and Geoinformation, 2012 (18): 417-427.
- [7] 李红军, 雷玉平, 李春强, 等. 地表温度-植被指数特征空间时空尺度效应分析[J]. 中国生态农业学报, 2014, 22(10): 1 252-1 258.
- [8] 张喆,丁建丽,李鑫,等.TVDI用于干旱区农业旱情监测的适宜性[J].中国沙漠,2015,35(1):220-227.
- [9] 杨玉永,徐秀杰,杨丽萍. 墒情遥感监测中热惯量模型的修正[J].灌溉排水学报,2018,37(6):54-59.
- [10] 伍漫春,丁建丽,王高峰.基于地表温度-植被指数特征空间的区域土壤水分反演[J].中国沙漠,2012,32(1):148-154.
- [11] 程燕芳,王嘉学,许路艳,等.云南高原喀斯特山原红壤退化中的表层土壤水分变异[J].江苏农业科学,2015,43(11):433-437.
- [12] 刘宇,王彦辉,郭建斌,等.六盘山华北落叶松人工林土壤水分空间异质性的降雨前后变化及其影响因素[J].水土保持学报,2016,30(5):197-204.
- [13] 张泉,刘咏梅,杨勤科,等.祁连山退化高寒草甸土壤水分空间变异特征分析[J].冰川冻土,2014,36(1): 88-94.
- [14] 汝博文,缴锡云,王耀飞,等.基于MODIS数据的土壤水分空间变异规律[J].中国农村水利水电,2016(4):38-42.
- [15] ROY D P, WULDER M A, LOVELAND T R, et al. Landsat-8: science and product vision for terrestrial global change research[J]. Remote Sensing of Environment, 2014 (145): 154-172.
- [16] BARSI J A, BARKER J L, SCHOTT J R. An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument[C]// Geoscience and Remote Sensing Symposium, IGARSS'03.Proceedings.2003 IEEE International. 2003:3 016-3 016.
- [17] SOBRINO J A, JIMÉNEZ-MUÑOZ J C. Minimum configuration of thermal infrared bands for land surface temperature and emissivity estimation in the context of potential future missions[J]. Remote Sensing of Environment, 2014 (148): 158-167.
- [18] 黄玲,高阳,邱新强,等. 灌水量和时期对不同品种冬小麦产量和耗水特性的影响[J]. 农业工程学报, 2013, 29(14): 99-108.
- [19] 王声锋,张寄阳,陈卫宾.豫北地区冬小麦耗水规律及不同水文年灌溉制度研究[J].灌溉排水学报,2012,31(2):62-65.
- [20] 雷志栋,杨诗秀,许志荣,等.土壤特性空间变异性初步研究[J].水利学报,1985(9):10-21.
- [21] 赵文举,李娜,李宗礼,等.不同种植年限压砂地土壤水分空间变异规律研究[J].农业现代化研究,2015,36(6):1067-1073.
- [22] 王秀君,陈健.基于LST-EVI特征空间的土壤水分含量反演[J].遥感技术与应用.2014,29(1):46-53.

- [23] WESTERN A W, ZHOU S L, GRAYSON R B, et al. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes[J]. Journal of Hydrology, 2004, 286(1/4): 113-134.
- [24] WESTERN A W, BLOSCHL G. On the spatial scaling of soil moisture[J]. Journal of Hydrology , 1999, 217(3/4): 203-224.
- [25] 郭德亮,樊军,米美霞.黑河中游绿洲区不同土地利用类型表层土壤水分空间变异的尺度效应[J].应用生态学报,2013,24(5):1199-1208.
- [26] 胡伟,邵明安,王全九.黄土高原退耕坡地土壤水分空间变异的尺度性研究[J].农业工程学报,2005,21(8):11-16.
- [27] 张继光,陈洪松,苏以荣,等.喀斯特地区典型峰丛洼地表层土壤水分空间变异及合理取样数研究[J].水土保持学报,2006,20(2):114-117,134.

Spatial Distribution of Soil Moisture Estimated Using Thermal Vegetation Drought Indices

MA Chunya^{1,2}, WANG Jinglei³, CHEN Zhen¹, YIN Huanqing⁴, CHEN Yong⁵, HUANG Xiuqiao^{1*}

(1. Key Laboratory of Water-saving Agriculture , Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; 2. Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;

3. Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; 4. Huojia Management Office of Henan People's Victory Canal Irrigation Area Administration, Xinxiang 453003, China; 5. Water Conservancy Bureau of Lanling County, Linyi 277700, China)

Abstract: [Objective] Understanding inherent spatial variability of soil moisture at various scales can improve water management and soil moisture sampling in irrigation regions. The objective of this paper is to present a new method to estimate this based on vegetation drought indices. [Method] The study was carried out in the People's Victory Canal Irrigation District, and the Landsat 8 remote sensing imagery was used to estimate the vegetation drought index based on canopy temperature. The relationship between TVDI and the soil moisture calculated from the imagery and the ground-truth data was used to estimate soil moisture distribution in the studied area. Soil moisture variation at two spatial scales was studied using the classical statistical and geo-statistical methods. [Result] The soil moisture in the two spatial scales followed normal distribution, and the variation coefficient of the soil moisture increased with scale and spatial resolution. The corresponding ratio of the spatial heterogeneity $C_0/(C_0+C)$, where C_0 was the nugget and C_0+C was the sill of the small scale, was less than 0.25, indicating a strong spatial autocorrelation at small scale. The corresponding ratio of spatial heterogeneity at regional scale was between 0.25 and 0.75, indicating a moderate correlation at regional scale. The variation coefficient, the variation range and the corresponding ratio of spatial heterogeneity all showed limited change at different resolutions at regional scale. [Conclusion] Our results alluded that using point-measured data and interpolation method is inappropriate to estimate soil moisture in the People's Victory Canal Irrigation District, and remote sensing method works better for estimating soil moisture distribution at regional scale.

Key words: Temperature Vegetation Drought Index; soil moisture; spatial variability

责任编辑:陆红飞