文章编号: 1672 - 3317 (2022) 12 - 0075 - 06

山西主要土壤磷淋溶临界值与其理化性质的关系

李丽君^{1,2}, 霍 晨³, 刘 平^{1,2*}, 霍晓兰^{1,2}, 马琳杰^{1,2}, 惠 薇^{1,2} (1.山西农业大学 资源环境学院, 太原 030031; 2.山西省土壤环境与养分资源重点实验室, 太原 030031; 3.山西大学 生物工程学院, 太原 030006)

摘 要:【目的】探究土壤磷素淋失临界值与土壤基本理化性质的关系。【方法】选取山西省总覆盖面积达 88.51%的 褐土、栗褐土、中性粗骨土、黄绵土、潮土 5 种典型土壤作为供试土壤,通过室内模拟试验分析土样的有机质量、 机械组成、活性铁量、活性铝量、Olsen-P 量、CaCl₂-P 量。在土样中加入不同梯度的 KH₂PO₄ 溶液,达到磷素平衡 状态后分别测定土样的 Olsen-P、CaCl₂-P 量,根据 Olsen-P 量与 CaCl₂-P 量的关系方程分析土壤磷淋失的临界值。【结 果】褐土、栗褐土、中性粗骨土、黄绵土和潮土的磷淋失临界值分别为 73.5、70.0、23.3、39.3、61.4 mg/kg。供试 土壤磷淋失临界值与黏粒量和活性铁量存在显著的负相关,但与有机质量和粉粒量的相关性则不显著。【结论】山 西省 5 种主要土壤的磷淋溶潜力由大到小分别为:中性粗骨土>黄绵土>潮土>栗褐土>褐土,土壤黏粒量与活性铁量 可以作为评估土壤磷淋失风险的主要土壤理化指标。

关键词:山西土壤;土壤理化性质;土壤磷素;淋溶突变点 中图分类号: S153 文献标志码: A doi: 10.13522/j.cnki.ggps.2022133 OSID:

李丽君, 霍晨, 刘平, 等. 山西主要土壤磷淋溶临界值与其理化性质的关系[J]. 灌溉排水学报, 2022, 41(12): 75-80. LI Lijun, HUO Chen, LIU Ping, et al. Phosphorus Leaching from Main Soils in Shanxi Province[J]. Journal of Irrigation and Drainage, 2022, 41(12): 75-80.

0 引 言

【研究意义】磷是植物生长的重要元素之一。 土壤中磷的过量积累会对土壤生态环境构成潜在威 胁^[1],降低地表水和地下水质量^[2-3]。由过量施肥或施 肥不当造成的农田磷流失不仅会导致农业生产成本 上升,还会污染水环境,造成水体富营养化^[4]。在以 往根据土壤有效磷量来决定施肥量的研究中,考虑作 物养分需求与土壤磷水平的研究较多,而兼顾磷淋溶 阈值与土壤磷生态风险的研究较少^[5-6]。探究土壤磷 淋溶阈值及其与土壤理化性质之间的关系,对于降低 土壤磷淋失风险具有重要意义。

【研究进展】Hesketh 等^[7]研究发现,不同类型 土壤的 CaCl₂浸提磷突变点和在长期施肥试验中测得 的 Olsen-P 量变化点之间具有高度一致性,可见该方 法可以提供有效的土壤磷淋溶指标。吕家珑等^[8]基于 Broadbalk 长期施肥试验与淋溶试验,证实了突变点 法预测土壤磷淋溶趋势是可行的。张瑞龙等^[9]分别测 定了秦岭北麓的猕猴桃园和小麦-玉米轮作 2 类土壤

基金项目:国家重点研发项目(2016YFD0800105-5)

耕层和剖面的 Olsen-P 量与 CaCl₂-P 量,发现前者的 磷淋失突变点的 Olsen-P 量为 40.1 mg/kg,具有较大 的淋溶风险;后者土壤磷积累量较低,没有突变点, 淋溶风险很低。刘利花等^[10]对长期不同施肥土壤中的 磷淋溶趋势的研究表明,土壤耕层 Olsen-P 量为 23.0 mg/kg,为土壤发生磷淋溶的阈值。研究表明,土壤 pH 值、盐分种类、氧化还原电位及铁铝氧化物等土 壤理化性质的差异必然会导致土壤中磷量、可溶性 和环境污染风险的不同^[11]。聂敏等^[12]选取了我国 16 种典型的可变电荷土壤,通过室内模拟试验发现可变 电荷土壤的 pH 值、黏粒量、氧化铁铝量、有机质量、 交换性钙和镁量等会对土壤临界点的 Olsen-P 量具有 显著影响。

【切入点】根据山西省第二次土壤普查的土壤分 类结果^[13],占据山西省土壤总面积百分比最大的 5 个土壤类别分别为褐土、栗褐土、中性粗骨土、黄绵 土、潮土,这5种土壤共占山西总土壤面积的 88.51%。 目前,关于山西省土壤磷特征及变化规律的报道较多, 而关于山西省不同土壤类型磷淋溶风险的研究报道 较少。【拟解决的关键问题】鉴于此,本研究以山西 省土壤类型占比最大的5类土壤为研究对象,探究土 壤磷淋溶阈值及其与土壤基本理化性质之间的关系, 为土壤磷淋失风险评估提供理论依据。

收稿日期: 2022-03-16

作者简介:李丽君(1963-),女,山西太原人。研究员,主要从事农业 面源污染与植物营养研究。E-mail: lilijun2005@163.com 通信作者、刘平(1072), 本,山平兴县人,平容县、主要出事土地环

通信作者:刘平(1973-),女,山西兴县人。研究员,主要从事土壤环 境与植物营养研究。E-mail: lp709@163.com

1 材料与方法

1.1 供试土壤

5 种供试土壤采集于 2019 年 7 月。其中, 褐土 (T1) 采集于寿阳县, 栗褐土 (T2) 采集于山阴县合 盛堡乡西双山村,中性粗骨土(T3)采集于阳城县西 河乡上东河山庄北部银匠山,黄绵土(T4)采集于柳 林,潮土(T5)采集于榆次市。土壤风干后过2mm 筛后测定土壤基本理化性质,如表1所示。

表]	土壤理化性质	

Table 1	Soil physical	and chemical	properties
---------	---------------	--------------	------------

土壤类别	编号	有机质量/ (g kg ⁻¹)	黏粒量/%	粉粒量/%	质地	Olsen-P 量/ (mg kg ⁻¹)	CaCl ₂ -P 量/ (mg kg ⁻¹)	活性铁量/ (mg kg ⁻¹)	活性铝量/ (mg kg ⁻¹)
褐土	T1	13.12	16.0	67.4	粉砂壤土	6.08	2.08	132.82	N.D
栗褐土	T2	12.26	11.4	47.7	壤土	12.38	1.35	129.64	N.D
中性粗骨土	Т3	15.27	32.7	54.4	粉砂质黏壤土	7.85	2.25	185.27	N.D
黄绵土	T4	2.80	24.6	42.5	壤土	16.27	3.77	195.12	N.D
潮土	T5	21.94	19.3	41.3	壤土	23.90	6.45	132.53	N.D

1.2 土壤培养试验

土壤风干后过 2 mm 筛,称取 100 g 土壤置于容 量为 250 mL 的小烧杯中,加入 KH₂PO₄ 溶液(浓度 梯度分别为 0、30、40、60、100、160、200、240、 300、400 mg/kg),并调节土壤含水率至 50% 田间持 水率,在 25 ℃室温下培养 4 d 后风干,再次加入去 离子水以调节土壤含水率,培养风干,同样操作进行 3 次干湿交替后,使土壤中磷达到平衡状态^[14],土壤 培养试验重复进行 3 次。用 NaHCO₃ 溶液和 CaCl₂ 溶 液分别浸提测定土壤磷量,参照的田间持水率为 20% (质量含水率)。

1.3 测定项目及方法

利用重铬酸钾-硫酸外加热法测定土壤有机质量; 利用吸管法测定土壤机械组成。

土壤 Olsen-P 的测定: 取土样 2.5 g, 用 pH 值为 8.5 的 50 mL 0.5mol/L 的 NaHCO₃ 溶液震荡 30 min 浸 提,利用紫外分光光度计和钼锑抗比色法测定。

土壤 CaCl₂-P 的测定:取土样 2 g,用 20 mL 的 0.01 mol/L 的 CaCl₂ 溶液震荡 1 h 浸提(1:5 土水比),利用紫外分光光度计和钼锑抗比色法测定。

活性铁铝的测定:用 pH 值为 3.0~3.2 的 0.2 mol/L 酸性草酸铵缓冲溶液浸提,利用试铁灵比色方法测定^[15]。 1.4 **数据处理**

数据处理采用 Excel 2007 软件进行, 方差分析采用 SPSS 24.0 进行。

2 结果与分析

2.1 土壤 Olsen-P 量与 CaCl₂-P 量的关系分析

5种供试土壤 CaCl₂-P 量都随 Olsen-P 量的增加而 提高,以 Olsen-P 量为横坐标,CaCl₂-P 量为纵坐标 绘制相关曲线,得出土壤 Olsen-P 与 CaCl₂-P 的分段 关系方程。高于拐点的 Olsen-P 量与 CaCl₂-P 量之间 的关系方程斜率最大,而低于拐点的 Olsen-P 量与 CaCl₂-P 量之间的关系方程斜率最小,并且 2 段方程 的相关系数均最高。2条斜率不同的直线之间存在一个转折点,该转折点的土壤 Olsen-P 量就是此类土壤 磷素淋失的临界值。供试土壤的磷素淋溶临界值分布 在 23.3~73.5 mg/kg 之间。

如图1所示,当Olsen-P量高于73.5 mg/kg时, T1土壤的CaCl₂-P量随Olsen-P量的增加而快速增加, 其 拟 合 方 程 为 CaCl₂-P=0.185 Olsen-P-6.013 (*R*²=0.876),此时CaCl₂-P量约为10.3 mg/kg;当 土壤Olsen-P量小于73.5 mg/kg时,随着Olsen-P量 的增加,CaCl₂-P量的增加趋于缓慢,Olsen-P与 CaCl₂-P之间的拟合方程为CaCl₂-P=0.056 Olsen-P+ 1.795 (*R*²=0.673)。

当土壤 Olsen-P 量小于 70.0 mg/kg 时, T2 土壤 CaCl₂-P 量随 Olsen-P 量的增加而缓慢增加, 二者拟 合方程为 CaCl₂-P=0.158 Olsen-P+0.087(*R*²=0.798); 当 Olsen-P 量大于 70.0 mg/kg 时, CaCl₂-P 量随 Olsen-P 量的增加而迅速增加,此时拟合方程为 CaCl₂-P=0.201 Olsen-P-3.798 (*R*²=0.915), CaCl₂-P 量约为 14.4 mg/kg。

当土壤 Olsen-P 量小于 23.3 mg/kg 时, T3 土壤 CaCl₂-P 量随 Olsen-P 量的增加而缓慢增加, 二者拟 合方程为 CaCl₂-P=0.161 Olsen-P-0.994(*R*²=0.852); 当 Olsen-P 量大于 23.3 mg/kg 时, CaCl₂-P 量随 Olsen-P 量的增加而迅速增加,此时拟合方程为 CaCl₂-P=0.198 Olsen-P-1.350(*R*²=0.741), CaCl₂-P 量约为 4.3 mg/kg。

当土壤 Olsen-P 量小于 39.3 mg/kg 时, T4 土壤 CaCl₂-P 量随 Olsen-P 量的增加而缓慢增加, 二者拟 合方程为 CaCl₂-P=0.162 Olsen-P-1.377(*R*²=0.828); 当 Olsen-P 量大于 39.3 mg/kg 时, CaCl₂-P 量随 Olsen-P 量的增加而迅速增加, 拟合方程为 CaCl₂-P=0.166 Olsen-P-1.023 (*R*²=0.614),此时 CaCl₂-P 量约为 5.3 mg/kg。

当土壤 Olsen-P 量小于 61.4 mg/kg 时, T5 土壤

12.9 mg/kg.

CaCl₂-P 量随 Olsen-P 量的增加而缓慢增加,二者拟 合方程为 CaCl₂-P=0.139 Olsen-P+3.322(*R*²=0.754); 当 Olsen-P 量大于 61.4 mg/kg 时,CaCl₂-P 随 Olsen-P 量的增加而迅速增加,拟合方程为 CaCl₂-P=0.423 Olsen-P-14.764(*R*²=0.920),此时 CaCl₂-P 量约为

5种供试土壤磷淋失临界值差异较大。褐土和栗褐 土的 Olsen-P 突变点十分接近,明显高于粗骨土、黄绵 土和潮土。其中褐土淋失临界值最高,为 73.5 mg/kg; 中性粗骨土淋失临界值最低,为 23.3 mg/kg。

图 1 不同类型土壤 Olsen-P 量与 CaCl₂-P 量的回归关系 Fig.1 The relationship between different soil Olsen-P and CaCl₂-P

2.2 土壤理化性质之间的关系

由表 2 可知, 土壤有机质量与土壤粉粒量、Olsen-P 量和 CaCl₂-P 量之间具有正相关关系, 与黏粒和活性 铁量之间存在负相关关系, 但相关性不显著。Olsen-P 量与 CaCl₂-P 量具有显著的正相关(*P*<0.05), 与粉 粒量和黏粒量具有负相关, 但相关性不显著。CaCl₂-P 量与黏粒、粉粒量具有负相关, 但相关性不显著。土 壤活性铁量和黏粒量呈正相关, 与粉粒、Olsen-P 量和 CaCl₂-P 量呈负相关。基础土样活性铝量低于检出下限, 因此不参与相关性分析。

2.3 土壤磷淋失临界值与土壤理化性质的关系分析

磷淋溶临界值的 Olsen-P 量与土壤黏粒、粉粒、 有机质、活性铁量的相关性如图 2 所示。土壤磷淋失 临界值 Olsen-P 量与有机质量呈对数关系。土壤磷淋 溶临界值的 Olsen-P 量与黏粒量存在显著负相关关系, 黏粒量越大的土壤淋溶临界值的 Olsen-P 量则越小。

淋溶临界值的 Olsen-P 量与粉粒量呈不显著的线性关系。土壤活性铁量与土壤磷淋失临界值之间存在显著 负相关关系(P<0.05)。土壤磷淋失临界值与黏粒 量和活性铁量的负相关系数均达到了显著水平,说明 它们之间的负相关关系是可靠的。综上所述,影响土 壤磷淋失临界值的主要因素是黏粒量与活性铁量。

表 2 土壤理化性质之间的相关性分析

Table 2 The correlative coefficient matrix of soil properties

指标	有机质	黏粒	粉粒	Olsen-P	CaCl ₂ -P	活性铁	活性铝
有机质	1.000						
黏粒	-0.056	1.000					
粉粒	0.067	0.019	1.000				
Olsen-P	0.518	-0.195	-0.649	1.000			
CaCl ₂ -P	0.517	-0.505	-0.615	0.928**	1.000		
活性铁	-0.567	0.606	-0.322	-0.154	-0.311	1.000	
活性铝	-	-	-	-	-	-	1.000

注 **表示 p<0.01。

3 讨论

研究表明,由于土壤固定磷酸盐的能力非常强, 通过土体淋失的磷量是有限的^[16]。而英国洛桑试验站 Broadbalk 长期定位试验的结果表明,当土壤 Olsen-P 量低于 60 mg/kg 时,从 60 cm 土层排出水中的总磷 量低于 0.15 mg/L;但当 Olsen-P 量超过 60 mg/kg 时, 排出水中的总磷量则呈直线增加^[7]。此外,当土壤 Olsen-P 量超过 60 mg/kg 时,土壤在 0.01 mol/L CaCl₂ 浸提条件下的磷量也急剧增加,存在着一个明显的突 变点,称为土壤磷酸盐淋失临界值。因此,通过室内 模拟试验,向土壤加入一系列浓度的无机磷酸盐以探 求土壤磷酸盐淋失的突变点,从而对土壤磷酸盐淋失 风险进行评估是可行的。

本研究得到山西省5个供试土壤磷淋失临界值分 布在23.3~73.5 mg/kg之间,褐土、栗褐土、中性粗 骨土、黄绵土和潮土的淋失临界值分别为73.5、70.0、 23.3、39.3、61.4 mg/kg,褐土和栗褐土的土壤Olsen-P 突变点十分接近,并且明显高于粗骨土、黄绵土和潮 土。一般耕地土壤有效磷量均低于此值^[17],因此以上 5种农田土壤较一般耕地不易发生磷淋失。长期施肥 的农田尤其是蔬菜保护地的土壤中容易累积较多的 有效磷,当Olsen-P量超过该临界值时就会发生磷淋 失。褐土临界值最高,在5种主要土壤中最不易发生 磷淋失。根据土壤磷淋失临界值和土壤有效磷农学阈值,从 而得出较为合理的施肥量。

土壤磷存在的动态平衡实际上为土壤磷吸附解 吸与沉淀溶解等反应的平衡过程,与土壤有机质量、 机械组成和酸碱反应等存在密切的相关性^[18]。于艳梅 等^[19]对我国18个省份的14种典型农田土壤进行室内 模拟试验,发现我国农田土壤的磷淋溶临界点差异很 大,临界点随土壤 pH 值、交换性钙、无机碳、沙粒 量的增加而减小,随土壤黏粒、有效磷、有机碳、活 性铁铝、交换性镁量的增加而增大。王静等^[20]研究发 现,磷的淋溶损失受土壤黏粒量的影响较大,尤其当 土壤的黏粒量很高时,它的影响程度表现更明显。钟 晓英等^[14]研究发现,土壤磷淋失临界值主要受制于土 壤有机质和活性铁铝量。

本试验结果表明,供试土壤磷淋失临界值与黏粒 量和活性铁量存在显著的负相关关系,与有机质和粉 粒量相关关系不显著。可能是黏粒量影响了磷的解吸 量和解吸率,从而间接影响到土壤对磷的吸附量和淋 失临界值。黄全能等^[21]研究发现磷吸附最大值与土壤 有机质量呈负相关关系,这与本文结论相符合,推测 其原因是土壤有机质降低铁铝的活性,导致土壤吸附 固定磷能力减小。而钟晓英等^[14]研究发现,土壤磷淋 失临界值主要受制于土壤有机质和活性铁铝量,其与 土壤活性铁量之间存在显著的正相关关系,并且随土 壤酸碱度而变化,与本文结论相反。原因可能是土壤 类型不同导致相异的试验结果,具体原因还有待进一 步研究。这也反映了土壤吸附磷的复杂性和不同土壤 吸附磷机制的差异。

对于山西主要耕地土壤来说,土壤磷淋失临界值 受制于黏粒和活性铁量。因此,可以通过黏粒和活性 铁量初步评估预测土壤磷淋失临界值,推测土壤磷淋 溶风险大小,但其机理需进一步验证。

4 结 论

山西省5种主要土壤的磷淋溶阈值有差异,褐土 和栗褐土的淋失环境风险明显高于粗骨土、黄绵土和 潮土。

供试土壤磷淋失临界值与黏粒量和活性铁量存 在显著的负相关关系,与有机质和粉粒量相关关系不 显著。生产实践中,可以通过土壤黏粒量和活性铁量 评估不同土壤磷淋失风险。

参考文献:

 韦高玲,卓慕宁,廖义善,等.不同施肥水平下菜地耕层土壤中氮磷 淋溶损失特征[J]. 生态环境学报, 2016, 25(6):1 023-1 031.
 WEI Gaoling, ZHUO Muning, LIAO Yishan, et al. Leaching characteristics of nitrogen and phosphorus in vegetable soils under different fertilization levels[J]. Ecology and Environmental Sciences, 2016, 25(6): 1 023-1 031.

- [2] JALALI Mohsen, JALALI Mshdi. Assessment risk of phosphorus leaching from calcareous soils using soil test phosphorus[J]. Chemosphere, 2017, 171: 106-117.
- [3] MAGUIRE Rory, SIMS Thomas. Soil testing to predict phosphorus leaching [J]. Journal of Environmental Quality, 2002, 31(5): 1 601-1 609.
- [4] 司友斌, 王慎强, 陈怀满. 农田氮、磷的流失与水体富营养化[J]. 土壤, 2000, 32(4): 188-193.
 SI Youbin, WANG Shenqiang, CHEN Huaiman. Nitrogen and phosphorus leaching from croplands and water eutrophication[J]. Soil, 2000, 32(4): 188-193.
- [5] 刘志琴, 丁桂云, 袁冬梅, 等. 小麦磷的临界值试验研究[J]. 现代农 业科技, 2011, 20: 47-50.
 LIU Zhiqin, DING Guiyun, YUAN Dongmei, et al. Phosphorous

threshold values of wheat[J]. Modern Agricultural Science and Technology, 2011, 20: 47- 50.

- [6] 孙克刚,李丙奇,和爱玲,等. 砂姜黑土区麦田土壤有效磷丰缺指标 及推荐施磷量研究[J]. 干旱地区农业研究, 2010, 28(2): 159-161, 182. SUN Kegang, LI Bingqi, HE Ailing, et al. Abundance and deficiency indices of soil available P for wheat and fertilization recommendation in Shajiang black soil areas[J]. Agricultural Research in the Arid Areas, 2010, 28(2): 159-161, 182.
- [7] HESKETH P C. Development of an indicator for risk of phosphorus leaching[J]. Journal of Environmental Quality, 2000, 29(1): 105-110.
- [8] 吕家珑, FORTUNE S, BROOKES P C. 土壤磷淋溶状况及其 Olsen 磷"突变点"研究[J]. 农业环境科学学报, 2003, 22(2): 142-146. LYU Jialong, SHARON Fortune, PHILIP Brookes. Research on Phosphorus Leaching from Soil and Its Olsen-P "Shreshold Volume"[J]. Journal of Agro-Environment Science, 2003, 22(2): 142-146.
- [9] 张瑞龙,吕家珑,刁展. 秦岭北麓两种土地利用下土壤磷素淋溶风 险预测[J]. 农业环境科学学报,2014,33(1):121-127. ZHANG Ruilong, LYU Jialong, DIAO Zhan. Prediction of soil phosphorus leaching risk under two types of land use in northern area of Qinling Mountains[J]. Journal of Agro-Environment Science, 2014, 33(1): 121-127.
- [10] 刘利花,杨淑英,吕家珑.长期不同施肥土壤中磷淋溶"阈值"研究[J].西北农林科技大学学报(自然科学版),2003,31(3):123-126. LIU Lihua, YANG Shuying, LYU Jialong. Studies on "threshold value" of phosphorus leaching in long-term different fertilization soils[J]. Journal of Northwest Science-Technology University of Agriculture and Forest (Natural Science Edition), 2003, 31(3): 123-126.
- [11] 刘畅,张玉龙,孙伟. 灌溉方式对保护地土壤磷素淋失风险的影响[J]. 土壤通报, 2012, 43(4): 923-928.
 LIU Chang, ZHANG Yulong, SUN Wei. Effect of irrigation methods on risk of phosphorus leaching loss in protected field[J]. Chinese Journal of Soil Science, 2012, 43(4): 923-928.

[12] 聂敏,肖和艾,廖敦秀,等.亚热带可变电荷土壤磷素淋失临界点及

其与土壤特性的关系[J]. 环境科学学报, 2013, 33(2): 579-586. NIE Min, XIAO Heai, LIAO Dunxiu, et al. Phosphorus leaching change point of subtropical variable-charge soils and its relations with soil properties[J]. Acta Scientiae Circumstantiae, 2013, 33(2): 579-586.

- [13] 刘耀宗, 张经元. 山西土壤[M]. 北京: 科学出版社, 1992.
 LIU Yaozong, ZHANG Jingyuan. Shanxi Soil[M]. Beijing: Science Press, 1992.
- [14] 钟晓英,赵小蓉,鲍华军,等. 我国 23 个土壤磷素淋失风险评估 I. 淋失临界值[J]. 生态学报, 2004, 24(10): 2 275-2 280.
 ZHONG Xiaoying, ZHAO Xiaorong, BAO Huajun, et al. The evaluation of phosphorus leaching risk of 23 Chinese soils I. Leaching criterion[J]. Acta Ecologica Sinica, 2004, 24(10): 2 275-2 280.
- [15] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

LU Rukun. Soil and agricultural chenistry analysis[M]. Beijing: China Agricultural Science and Technology Press, 2000.

[16] 赵林萍. 施用有机肥农田氮磷流失模拟研究[D]. 武汉: 华中农业大学, 2009.

ZHAO Linping. Study on nitrogen and phosphorus losses of crop land through manure application under rainfall simulation condition[D]. Wuhan: Huazhong Agricultural University, 2009.

- [17] 刘建玲,张福锁,杨奋翮.北方耕地和蔬菜保护地土壤磷素状况研究[J]. 植物营养与肥料学报,2000,6(2):179-186.
 LIU Jianling, ZHANG Fusuo, YANG Fenhe. Fractions of phosphorus in cultivated and vegetable soils in northern China[J]. Plant Nutrition and Fertilizer Science, 2000, 6(2): 179-186.
- [18] 赵小蓉,钟晓英,李贵桐,等. 我国 23 个土壤磷素淋失风险评估 II. 淋失临界值与土壤理化性质和磷吸附特性的关系[J]. 生态学报, 2006, 26(9): 3 011-3 017.

ZHAO Xiaorong, ZHONG Xiaoying, LI Guitong, et al. The evaluation of phosphorus leaching risk of 23 Chinese soils II. The relationships between soil properties, P adsorption characteristics and the leaching criterion[J]. Acta Ecologica Sinica, 2006, 26(9): 3 011-3 017.

- [19] 于艳梅, 柴泽宇, 孙本华, 等. 我国主要农田土壤磷淋溶阈值及其与 土壤性质的关系[J]. 江苏农业科学, 2020, 48(15): 281-287.
 YU Yanmei, CHAI Zeyu, SUN Benhua, et al. The relationship between phosphorus leaching criterion and soil properties in major farmlands in China[J]. Jiangsu Agricultural Sciences, 2020, 48(15): 281-287.
- [20] 王静,丁树文,李朝霞,等.丹江库区典型土壤磷的淋溶模拟研究[J].农业环境科学学报,2008,27(2):692-697.
 WANG Jing, DING Shuwen, LI Zhaoxia, et al. Simulated study on phosphorus leaching of typical soils in Danjiang Reservoir area[J]. Journal of Agro-Environment Science, 2008, 27(2): 692-697.
- [21] 黄全能. 福建杉木林下红壤的磷素吸附与解吸特性[J]. 南京林业大 学学报, 1998, 22(2): 39-44.

HUANG Quanneng. Properties of phosphorus adsorption and desorption in soil under the stand of Chieses fir in Fujian[J]. Journal of Nanjing Forestry Unversity, 1998, 22(2): 39-44.

Phosphorus Leaching from Main Soils in Shanxi Province

LI Lijun^{1,2}, HUO Chen³, LIU Ping^{1,2*}, HUO Xiaolan^{1,2}, MA Lingjie^{1,2}, HUI Wei^{1,2}

(1. College of Resource and Environment, Shanxi Agricultural University, Taiyuan 030031, China;

2. Laboratory of Soil Environment and Nutrient Resources of Shanxi Province, Taiyuan 030031, China;

3. College of Bioengineering, Shanxi University, Taiyuan 030006, China)

Abstract: (Objective **)** Phosphorus (P) leaching from soils is not only an environmental concern but also a financial loss to farmers. Understanding the mechanisms underlying mobility of P in different soils is essential to alleviating

its loss to surface runoff and leaching to groundwater. [Method] We studied the physical and chemical properties of typical soils in Shanxi province, including chestnut-cinnamon soil, regosol soil, loessial soil and fluvo-aquic soil, which combine to cover 88.51% of the land surface across the province. For each soil, we measured its organic matter, particle size in the range of >0.002 mm, 0.002~0.05 mm and 0.05~2 mm, texture, active Fe (Al), Olsen-P and CaCl₂-P. Soluble P at different concentrations was added to each soil, and it was allowed to reach equilibrium. The contents of Olsen-P and CaCl₂-P were then determined using NaHCO₃ and CaCl₂, and the threshold that resulted in P starting to leach was calculated from the relationship between Olsen-P and CaCl₂-P. [Result] The critical P content beyond which P leached is 73.50 mg/kg for cinnamon soil, 7.0 mg/kg for chestnut-cinnamon soil, 23.30 mg/kg for neutral regosols soil, 39.4 mg/kg for loessial soil and 61.36 mg/kg for fluvo-aquic soil. The critical Olsen-P content in all soils increased with the increase in organic matter content but not significantly (p>0.05). Logarithm of the critical Olsen-P content is significantly correlated to the logarithm of clay and active Fe content (p<0.05), but insignificantly correlated to the logarithm of significantly correlated to the logarithm of clay and active Fe content (p<0.05), but insignificantly correlated to the logarithm of clay and active Fe content (p<0.05), but insignificantly correlated to the logarithm of significantly regosol soil>loessial soil>loessial soil organic matter and silt contents (p>0.05). [Conclusion] Vulnerability of the main five soils to P leaching is ranked in the order of neutral regosol soil>loessial soil>loessial soil>clinnamon soil. Clay and active Fe contents are the edaphic factors affecting P leaching the most.

Key words: Shanxi soil; soil physical and chemical properties; soil phosphorus; change-point

责任编辑:韩洋

(上接第64页)

Effects of Nitrogen Fertilization and Irrigation on Soil Aggregation and Soil Organic Carbon in Winter Wheat Field

LI Caixia¹, CHEN Jinsai^{1,2}, FU Yuanyuan³, HAN Qisheng¹, NING Huifeng¹, WANG Guangshuai¹

(1. Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Water Demand and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China; 2. College of Agronomy, China Agricultural University, Beijing 100081, China; 3. College of Plant Sciences, Tarim University, Alaer 843300, China)

Abstract: (Objective **)** Aggregation is an important soil health indicator modulating many soil functions including nutrient bioavailability and carbon sequestration. It is affected by a multitude of factors. The purpose of this paper is to study the effect of irrigation and nitrogen fertilization on soil aggregation and soil organic carbon. **(**Method **)** The experiment was conducted in a winter wheat field. It consisted of two nitrogen applications: 0 (N0) and 180 kg/hm² (N180), two irrigation treatments: sufficient irrigation (F) and deficit irrigation using 65% of the water in F. In each treatments, we measured water-stable aggregates and soil organic carbon. **(**Result **) (**Deficit irrigation coupled with nitrogen fertilization increased water-stable macroaggregates with diameter ≥ 0.25 mm. Nitrogen fertilization increased organic carbon in the top 0~30 cm soil layer by more than 3.59% when irrigation was the same, while deficit irrigation increased organic carbon in the same soil layer by more than 2.86% when nitrogen fertilization was the same. **(2)**Soil moisture directly affected soil carbon, explaining 83.9% of the change in total organic carbon, while nitrogen indirectly affected soil carbon was negative, while its direct influence was positive. **(Conclusion)** The effect of nitrogen fertilization on soil aggregation was modulated by irrigation. Nitrogen fertilization combined with deficient irrigation boosted carbon accumulation in the topsoil.

Key words: soil aggregates; irrigation; nitrogen fertilizer; soil organic carbon