文章编号: 1672 - 3317 (2024) 01 - 0069 - 09

基于自适应模糊推理系统的汾河流域

参考作物蒸散量模拟研究

葛杰¹,刘园^{1,2*},雒舒琪³,曹绮欣¹

(1.中国电建集团西北勘测设计研究院有限公司,西安 710065; 2.陕西省水生态环境工程技术 研究中心,西安 710065; 3.西北农林科技大学,陕西 杨凌 712100)

摘 要:【目的】有效提高缺少气象资料条件下汾河流域参考作物蒸散量(ET₀)计算精度。【方法】选取汾河流域及 附近7个气象站点1960—2017年逐日气象资料,根据不同气象要素组合,构建16种基于自适应模糊推理系统(ANFIS) 的ET₀模拟模型,并与 Hargreaves-Samani、Irmark-Allen、Makkink 模型进行比较,评价 ANFIS 模型在汾河流域的适 用性及可移植性。【结果】①ANFIS 模型能很好地展现 ET₀与各输入因子之间的非线性关系;仅输入 T_{max}、T_{min}、R_a 建立的 ANFIS2 模型模拟精度(平均 R²为 0.882,平均 NSE 为 0.876,平均 RMSE 为 0.341 mm/d)能满足使用要求, 随着输入气象要素数量的增加,模型模拟精度不断提高;②在输入因子相同时,ANFIS 模型精度高于 Hargreaves-Samani、Irmark-Allen、Makkink 模型;③ANFIS 模型在汾河流域具有很强的泛化能力和可移植性,不同 分区建立的 ANFIS 模型相互移植时具有较高精度(平均 R²为 0.983,平均 NSE 为 0.978,平均 RMSE 为 0.134 mm/d)。 【结论】因此,在缺少气象资料时,基于自适应模糊推理系统建立的 ET₀模拟计算模型可作为汾河流域 ET₀计算的 推荐模型。

关键词: 汾河流域;参考作物蒸散量;自适应模糊推理系统;可移植性
 中图分类号: P426.2
 文献标志码: A
 doi: 10.13522/j.cnki.ggps.2023201

葛杰, 刘园, 維舒淇, 等. 基于自适应模糊推理系统的汾河流域参考作物蒸散量模拟研究[J]. 灌溉排水学报, 2024, 43(1): 69-77.

GE Jie, LIU Yuan, LUO Shuqi, et al. Simulation research of reference crop evapotranspiration based on ANFIS in Fenhe basin of China[J]. Journal of Irrigation and Drainage, 2024, 43(1): 69-77.

0 引 言

【研究意义】参考作物蒸散量(*ET*₀)又称可能 蒸发量或潜在蒸散量,指在充分供水条件下,反照率 为 0.23,固定冠层阻力为 70 s/m 时,高度 12 cm 生长 旺盛的作物完全覆盖地面时的蒸散量^[1-2];*ET*₀是研究 区域气候干湿变化、优化水资源配置、调整农业种植 结构与评估环境变化的重要指标,准确计算其值对区 域社会经济发展具有十分重要的意义^[3-4]。

【研究进展】由于参考作物蒸散量难以在野外测量,因此国内外学者提出了许多 *ET*₀ 计算模型。 其中,联合国粮农组织推荐的标准参考作物蒸散量 计算模型(FAO 56 P-M)在全球不同气候区具有广 泛适用性^[5],但该模型计算过程较为复杂且需要较 多的气象资料,如最高气温、最低气温、相对湿度、

©《灌溉排水学报》编辑部,开放获取 CC BY-NC-ND 协议

日照时间、风速等,在资料缺乏地区难以应用^[6]。 因此, ET₀ 简化计算模型成为国内外研究热点。目 前关于 ET₀ 简化计算模型较多,如温度法中的 Hargreave-Samani^[7], 辐射法中的 Makkink^[8]与 Irmark-Allen^[9],综合法中的 Kimberley Penman^[10]等。 众多学者^[11-14]研究了不同ET。简化计算模型在不同地 区的适用性,在缺乏气象资料时,ET₀简化计算模型 有一定优势,但受模型原理、区域自然地理条件及气 候条件的影响,不同地区所适宜的计算模型存在一定 差异,不同模型计算精度差异较大或可移植性不强。 因此,使用较少气象资料建立更高精度的 ET₀ 计算模 型需更深入的研究。随着大数据、人工智能、云计算 等技术的快速发展,作为人工智能研究核心之一的机 器学习在农业水土资源领域的应用越来越广泛,如人 工神经网络(BP)、支持向量机(SVM)、随机森林 (RF)等。与此同时,机器学习算法也被用来模拟计 算 ET₀,为准确计算缺少气象资料地区的 ET₀提供了 新方法。Rai 等^[15]研究表明,在印度北方邦和阿坎德 邦 SVM 模型计算的 ET₀精度高于 M5P 模型树算法、 RF 模型。Ferreira 等^[16]利用人工神经网络(ANN)、

收稿日期: 2023-05-08 修回日期: 2023-09-11

基金项目: 国家自然科学基金面上项目 (51979222); 陕西省科技统筹创 新计划项目 (2016KTZDNY-01-01)

作者简介: 葛杰 (1994-), 男。硕士研究生, 工程师, 主要从事水文水资 源方面研究。E-mail: gejie@nwh.cn

通信作者:刘园(1970-),男。正高级工程师,主要从事流域水文模拟方面研究。E-mail:liuvuan@nwh.cn

随机森林(RF)、极度梯度提升树(XGBoost)和多 元自适应回归样条(MARS)对巴西参考作物蒸散量 进行了模拟预测,表明基于机器学习算法的模型精度 高于经验公式。王升等^[17]研究认为,随机森林算法 (RF)能成功在西南喀斯特地区*ET*₀模拟计算中应用。 陈宣全等^[18]利用多元自适应回归样条算法模拟预测 川中丘陵区参考作物蒸散量,结果表明,模型具有较 高的稳定性和可移植性。刘小强等^[19]推荐高斯过程回

汾河是黄河第二大支流,山西省的"母亲河", 在山西省的生态环境保护和社会经济发展中具有举 足轻重的地位。自适应模糊推理系统(ANFIS)是一 种将神经元网络与模糊逻辑有机结合的新型模糊推 理系统,该模型能很好的反映气象要素与 *ET*₀之间复 杂的非线性关系。【切入点】目前,关于汾河流域 *ET*₀ 计算模型的适用性及可移植性鲜有研究。

归模型(GPR)作为江西参考作物蒸散量计算模型。

【拟解决的关键问题】基于此,根据海拔高度将 汾河流域划分为高、中、低3个分区,以FAO56P-M 模型计算的 *ET*₀作为标准值,构建基于自适应模糊推 理系统(ANFIS)的 *ET*₀模拟计算模型,并与其他模 型进行对比,研究 ANFIS 模型在汾河流域的适用性 及可移植性,从而获得缺乏气象资料时汾河流域 *ET*₀ 优化计算模型,为汾河流域高质量发展提供技术支撑。

1 材料与方法

1.1 研究区概况

汾河发源于神池县太平庄乡西岭村,于万荣县荣 河镇庙前村汇入黄河。汾河流域位于山西省中部地区, 黄土高原东部,河流全长约710km,流域面积39826 km²,海拔高程348~2801m;地理坐标北纬 35°13′—39°4′、东经110°26′—113°27′。流域地势南低 北高,四周群山环绕,主要有太行山、吕梁山、管涔 山等,地貌类型有为山地、丘陵、平川。考虑到流域 地理气候等因素,选取流域内及附近7个代表性站点 作为研究对象,流域位置及站点分布见图1。

图1 汾河流域气象站点分布图

Fig.1 Distribution of meteorological stations in Fenhe basin

1.2 数据获取

选取汾河流域及附近 7 个代表气象站 1960— 2017 年逐日气象数据,数据来自中国气象数据网 (https://data.cma.cn/),包含日最高气温(*T*_{max})、日 最低气温(*T*_{min})、日照时间(*n*)、相对湿度(*RH*)、 2 m 高处风速(*u*₂,由10 m 高处风速*u*₁₀计算得到)。 本文所选用的 7 个气象站点数据经过严格质量控制, 正确率均接近 100%,且不存在较长时间缺失,对部 分短时间缺失的数据采用多年平均值和线性内插法 进行插补。7 个气象站点逐日多年平均*T*_{max}、*T*_{min}、 *T*_{mean}(平均气温)、*RH*、*u*₂、*n*、*u*₁₀见表1。

	Location and average daily meteorological elements of meteorological stations in Fenne basin										
区域	站点	纬度/。	经度/°	海拔/m	$T_{\rm max}/^{\circ}{\rm C}$	$T_{\min}/^{\circ}\mathbb{C}$	$T_{\rm mean}/{}^\circ\!{ m C}$	<i>RH</i> /%	$u_2/(m s^{-1})$	<i>n</i> /(h d ⁻¹)	$u_{10}/(m s$
高海拔	五寨	38.92	111.82	1 401.0	13.17	-1.45	5.86	58.05	1.89	7.40	2.53
	兴县	38.47	111.13	1 012.6	15.92	3.58	9.75	53.90	1.85	6.95	2.48
太 中海拔 太 介	太原	37.62	112.58	776.3	17.21	4.30	10.76	58.46	1.55	6.88	2.07
	太谷	37.58	112.60	785.8	17.50	3.98	10.74	59.45	1.41	7.03	1.88
	介休	37.03	111.92	743.9	17.72	4.94	11.33	59.57	1.58	6.40	2.11

7.51

7.38

表1 汾河流域各气象站点位置及日气象要素平均值 b.1 Location and average daily meteorological elements of meteorological stations in Fenhe basi

13.54

13 51

61 33

64.47

1.3 研究方法

低海拔

临汾

侯马

36.07

35.65

当机器学习模型样本集的数量在几万量级时,训 练集、检验集、测试集的比例分别为 60%、20%、 20%^[20]。本研究采用的是 1960—2017 年共 21 185 组 数据集,因此,将 7 个气象站点 1960—2017 年气象 资料及 FAO 56 P-M 公式计算出的标准 *ET*₀分为 3 个 部分,1960—1995 年数据作为训练样本,1996—2006 年数据作为检验样本,基于不同气象要素组合建立

111 50

111.36

449 5

443.8

19 56

19.63

ANFIS 模型; 2006—2016 年气象数据作为测试样本, 使用已建立的 ANFIS 模型, 计算各站点的 *ET*₀, 并与 相应时段 FAO 56 P-M 公式和不同经验模型的计算结 果进行对比,评价 ANFIS 模型在汾河流域的适用性 及可移植性。

5 99

6.08

1.72

1.92

1.29

1 4 4

由于海拔高度对气温、相对湿度、风速、日照时 间等气象要素均有影响,从而对 *ET*₀产生影响,因此 本研究根据海拔高度将汾河流域划分为高、中、低 3 个分区,分别研究 ANFIS 模型在不同海拔区域的适 用性。气温(T_{max} , T_{min})是气象站基本观测项目之 一,在无气象站点地区较容易获得,故将气温作为 ANFIS 模型输入的基础组合。引入地球外辐射(R_a) 可使 ET_0 计算精度得到很大提升,且 R_a 仅由气象站 点的纬度和时间计算得到^[3],所以将 R_a 引入到 ANFIS 模型中并分析 R_a 对汾河流域 ET_0 计算模型的影响程 度。在此基础上,组合各气象要素,建立 16 个基于 ANFIS 模型的 ET_0 模拟模型,详见表 2。

表 2 ANFIS 模型组合与输入参数

T-1-0	ANIEIC			
Tad.2	ANFIS	models	and input	Darameters

模型编号	输入参数	输入气象要素个数
ANFIS1	$T_{\rm max}$, $T_{\rm min}$	2
ANFIS2	T_{\max} T_{\min} R_a	2
ANFIS3	$T_{\rm max}$, $T_{\rm min}$, RH	3
ANFIS4	T_{\max} , T_{\min} , n	3
ANFIS5	$T_{\rm max}$, $T_{\rm min}$, u_2	3
ANFIS6	T_{max} , T_{min} , RH_{γ} , R_{a}	3
ANFIS7	T_{\max} , T_{\min} , n_{∞} , R_{a}	3
ANFIS8	$T_{\rm max}$, $T_{\rm min}$, u_2 , $R_{\rm a}$	3
ANFIS9	T_{max} , T_{min} , RH_{2} , n	4
ANFIS10	T_{max} , T_{min} , RH_{∞} , u_2	4
ANFIS11	T_{\max} , T_{\min} , n_{∞} , u_2	4
ANFIS12	T_{max} , T_{min} , RH_{N} , n_{N} , R_{a}	4
ANFIS13	T_{max} , T_{min} , RH_{2} , u_{2} , R_{a}	4
ANFIS14	T_{max} , T_{min} , n_{∞} , $u_{2\infty}$, R_{a}	4
ANFIS15	T_{max} , T_{min} , RH_{γ} , n_{γ} , u_2	5
ANFIS16	T_{max} , T_{min} , RH_{S} , n_{S} , u_{2S} , R_{a}	5

1.4 参考作物蒸散量计算模型

1.4.1 FAO 56 P-M 模型

FAO-56 P-M 模型基于空气动力学和能量平衡方程,综合考虑了各种气象因素,物理意义明确,在应用中最为广泛,将 FAO 56 P-M 模型的计算结果作为 *ET*₀的标准值^[21],计算式为:

$$ET_{0} = \frac{0.408\Delta(R_{n}-G) + \gamma \frac{900}{T_{mean} + 273} u_{2}(e_{s}-e_{a})}{\Delta + \gamma(1+0.34u_{2})}, \quad (1)$$

式中: ET_0 为参考作物蒸散量 (mm/d); R_n 为地表净 辐射 (MJ/ (m² d)); T_{mean} 为日平均气温 (°C); G 为 土壤热通量(MJ/(m² d)), u_2 为 2 m 高处风速(m/s); e_s 为饱和水汽压 (kPa); e_a 为实际水汽压 (kPa); Δ 为饱和水汽压曲线斜率 (kPa/°C); γ 为干湿表常数 (kPa/°C)。

其中,日平均气温(*T*_{mean})为日最高气温(*T*_{max}) 和日最低气温(*T*_{min})的平均值^[21];当时间尺度为 1~10 d时,土壤热通量可忽略不计^[21],本研究获取的为逐 日气象数据,因此土壤热通量取 0。

1.4.2 Hargreaves-Samani 模型

Hargreaves-Samani 模型以温度资料为基础,综合 考虑了平均温度、温差及大气顶层辐射对参考作物蒸 散量的影响^[7],计算式为:

$$ET_0=0.000\,936 (T_{\text{max}}-T_{\text{min}})^{0.5} + (T_{\text{mean}}+17.8)R_a, (2)$$

式中: T_{max} 为日最高气温(\mathbb{C}); T_{min} 为日最低气温(\mathbb{C}); R_a 为地球外辐射 (**MJ**/ ($\mathbf{m}^2 \mathbf{d}$))。

*R*a可由太阳常数、太阳磁偏角和日序数来计算, 计算式为:

$$R_a=f$$
 (Latitude, J), (3)

式中: Latitude 为气象站点纬度(rad); J为日序数, 取值为 1~365 或 366, 1月 1日取日序为 1。

1.4.3 Irmark-Allen 模型

Irmark-Allen 模型是由 Irmark 等^[9]提出的一种基 于辐射法的计算模型,需要输入的气象因子为最高气 温、最低气温及日照时间,计算式为:

 $ET_0 = -0.611 + 0.149R_{\rm S} + 0.079T_{\rm mean}, \qquad (4)$

式中: R_s 为太阳短波辐射($MJ/(m^2 d)$,由日照时间 n和地球外辐射 R_a 计算得到。

1.4.4 Makkink 模型

Makkink 模型是由 Makkink 等^[8]基于荷兰寒冷气 候条件下提出的计算模型,计算式为:

$$ET_0 = 0.61 \frac{\Delta}{\Delta + \gamma} \frac{R_s}{2.45} - 0.12,$$
 (5)

1.5 自适应神经模糊推理系统

Jang^[22]在 1993 年提出的自适应神经模糊推理系统(ANFIS)将人工神经网络的数据学习能力与模糊 推理规则进行了有机结合,具有自组织、自适应、自 学习等优点。该模型主要采用反向传播算法和最小二 乘法来更新调整网络参数,并自动生成最优的模糊规则^[22]。

ANFIS 模型的推理是以 Takagi-Sugeno FIS 为基础,其优势在于能够自动生成"if-then"规则。假设模拟系统具有 2 个输入变量 *x*₁、*x*₂,1 个输出参数 *y*,该模型的模糊规则可表示为:

规则 1: if x_1 is A_1 and x_2 is B_1 ; then $y_1=p_1 x_1+q_1x_2+r_1$ 规则 2: if x_1 is A_2 and x_2 is B_2 ; then $y_2=p_2 x_1+q_2x_2+r_2$ 式中: A_1 、 A_2 、 B_1 、 B_2 为 2 个规则对应的非线性参数, p_1 、 p_2 、 q_1 、 q_2 、 r_1 、 r_2 为 2 个规则对应的结论参数。 将每条规则的输出结果进行加权平均即可得到最终 输出结果。具体计算式为:

$$y = \frac{\omega_1}{\omega_1 + \omega_2} y_1 + \frac{\omega_2}{\omega_1 + \omega_2} y_2, \tag{6}$$

$$y = \overline{\omega_1} y_1 + \overline{\omega_2} y_2 = (\overline{\omega_1} x_1) p_1 + (\overline{\omega_1} x_2) q_1 + \overline{\omega_1} r_1 + (\overline{\omega_2} x_1) p_2 + (\overline{\omega_2} x_2) q_2 + \overline{\omega_2} r_2, \qquad (7)$$

式中: ω_1 、 ω_2 分别为规则 1 与规则 2 的适用程度; $\overline{\omega_1}$ 、 $\overline{\omega_2}$ 分别为规则 1 与规则 2 归一化后的适用程度; y 为 ANFIS 模型的输出结果。

2个输入变量形成的 ANFIS 模型拓扑结构见图 2, 拓扑结构共分为 5 层, 各层的功能如下:第1层:对 输入的变量数据进行模糊处理,并输出模糊集相应的 隶属度。第2层:实现条件部分的模糊集运算,输出

Fig.2 Topology structure of ANFIS model

1.6 模型评价

采用相关系数评价6种输入因子与*ET*₀的相关性。 相关系数绝对值为0.8~1.0表示极强相关,0.6~0.8表 示强相关,0.4~0.6表示中等程度相关,0.2~0.4表示 弱相关,0~0.2表示极弱相关或无相关。

选取纳什效率系数(*NSE*)、均方根误差(*RMSE*)和决定系数(R^2)3个统计参数对 ANFIS 模型模拟的 *ET*₀精度进行评价。在此基础之上,综合考虑每个参数,构建综合评价指标(*CPI*),对模型的模拟精度进行排序。 R^2 、*RMSE*计算方法见参考文献[23],*NSE*、 *CPI*计算式为^[23]:

$$NSE=1-\frac{\sum_{i=1}^{m} (Y_{i}-\bar{Y})^{2}}{\sum_{i=1}^{m} (X_{i}-\bar{X})^{2}},$$
(8)

$$CPI_i = \sum_{i=1}^{3} \alpha_i \left(g_i - y_{ij} \right), \qquad (9)$$

式中: Y_i 为模型模拟的第 *i* 日 *ET*₀; X_i 为 FAO 56 P-M 模型计算的第 *i* 日标准 *ET*₀; \bar{X} 为 X_i 的均值; \bar{Y} 为 Y_i 的均值; *m* 为样本数量; α_i 为系数, 对 *NSE* 和 R^2 , 取 1, 对 *RMSE* 取-1; g_i 为不同指标的中位数, y_{ij} 为 不同指标的计算值。*NSE* 越接近 1,说明模型效率越 高; R^2 越接近 1,表明模型模拟越准确; *RMSE* 越小, 表明模型模拟误差越小。*CPI* 值越大,模型模拟精度 排名越靠前。

2 结果与分析

2.1 不同气象要素相关性分析

参考作物蒸散量(ET_0) 与模型 6 个输入因子的 相关系数见表 3。由表 3 可知,与 ET_0 相关性较强的 输入因子有 T_{max} 、 T_{min} 、n、 R_a ,其中相关性最强的为 T_{max} ,相关系数为 0.857~0.922;其次为 R_a ,相关系数 为 0.822~0.877,进一步验证了将 R_a 作为 ANFIS 模型 的输入因子,可提高模型模拟精度。

高海拔地区 2 个站点的(五寨、兴县)6 个输入 因子与 ET_0 的相关性表现为: $T_{max}>R_a>T_{min}>n>RH>u_2$, 而在中海拔和低海拔地区的 5 个站点的(太原、太谷、 介休、临汾、侯马)6个输入因子与 ET_0 的相关性表现为: $T_{max}>R_a>T_{min}>n>u_2>RH$,可见在高海拔地区RH对 ET_0 的影响程度高于 u_2 ,而在中海拔和低海拔地区 u_2 对 ET_0 的影响程度高于RH。

表 3 汾河流域各站点 6 个输入因子与 ET_0 相关系数 Tab.3 Correlation coefficient between all input factors and

	•	T 1	
· · ·	110	Lonho	b0011
10		renne	DASH
· • ()		1 cinic	ouon

		-	310 m i v				
输入 因子	五寨	兴县	太原	太谷	介休	临汾	侯马
$T_{\rm max}$	0.908	0.922	0.881	0.883	0.857	0.900	0.913
T_{\min}	0.786	0.793	0.759	0.759	0.717	0.773	0.768
RH	-0.298	-0.348	-0.145	-0.157	-0.247	-0.246	-0.300
п	0.514	0.557	0.606	0.607	0.608	0.603	0.610
$R_{\rm a}$	0.877	0.871	0.874	0.858	0.822	0.876	0.870
u_2	0.189	0.251	0.286	0.212	0.249	0.375	0.449
汁	相大性性	5.通过了。	. 0.01.64	目並歴長道	IД		

注 相关性均通过了 α=0.01 的显著性检验。

2.2 不同气象要素输入下 ANFIS 模型模拟精度

表 4 为汾河流域不同海拔分区 ANFIS 模型的模 拟精度。图 3 为不同模型模拟计算误差。不同海拔分 区的 R² 为 0.766~0.999, NSE 为 0.758~0.999, RMSE 为0.036~0.496 mm/d。对比模型 ANFIS1 与 ANFIS2、 ANFIS3 与 ANFIS6、ANFIS4 与 ANFIS7、ANFIS5 与 ANFIS8、ANFIS9 与 ANFIS12、ANFIS10 与 ANFIS13、ANFIS11 与 ANFIS14、ANFIS15 与 ANFIS16 模型, 增加 R_a后, R²平均增加了 0.036, NSE 平均增加了 0.041, RMSE 平均降低了 0.077 mm/d。为 提高模型模拟精度,将R。作为模型必要的输入因子。 在输入 2 个气象要素 (T_{max} 、 T_{min}) 和 R_a 时, ANFIS2 模型平均 R²为 0.882, 平均 NSE 为 0.876, 平均 RMSE 为 0.341 mm/d; 3 个分区的模拟精度表现为: 高海拔 地区>低海拔地区>中海拔地区。在仅输入 T_{max} 、 T_{min} 、 R_a时,模拟精度能满足要求,但为得到精度更高的模 型,需增加其他气象要素作为输入因子。在输入3个 气象要素和 R_a 时,对比 ANFIS6 模型 (T_{max} 、 T_{min} 、 RH、R_a)与 ANFIS2 模型(T_{max}、T_{min}、R_a)发现, 增加 RH 后, R² 平均增加了 0.059, NSE 平均增加了 0.046, RMSE 平均降低了 0.061 mm/d。模拟精度在 3 个分区均有提升,由于不同海拔分区 ET_0 对 RH 敏感

性不同,3 个分区提升效果表现为:中海拔地区>高 海拔地区>低海拔地区。ANFIS6 模型的模拟精度表现 为: 高海拔地区>低海拔地区>中海拔地区, 这与 ANFIS2 模型一致。对比 ANFIS7 模型(T_{max}、T_{min}、 n、 R_a)与ANFIS2模型(T_{max} 、 T_{min} 、 R_a), 增加n后, R²平均增加了 0.060, NSE 平均增加了 0.062, RMSE 平均降低了 0.098 mm/d。模拟精度的增加幅度表现为: 中海拔地区>低海拔地区>高海拔地区; ANFIS7 模型 模拟精度表现为低海拔地区>高海拔地区>中海拔地 区。对比 ANFIS8 模型 (T_{max}、T_{min}、u₂、R_a) 与 ANFIS2 模型 (T_{max} 、 T_{min} 、 R_{a}), 增加 u_{2} 后, R^{2} 平均增加了 0.044, NSE 平均增加了 0.035, RMSE 平均降低了 0.063

mm/d。模拟精度增加幅度表现为:中海拔地区>高海 拔地区>低海拔地区; ANFIS8 模型模拟精度表现为: 高海拔地区>低海拔地区>中海拔地区。与 ANFIS2 模 型相比, ANFIS6、ANFIS7、ANFIS8 模型为在 ANFIS2 模型的基础上增加了1个气象要素的模型,高海拔地 区的模拟精度表现为: ANFIS6 模型>ANFIS8 模 型>ANFIS7 模型,中海拔和低海拔地区的模拟精度表 现为: ANFIS7 模型>ANFIS6 模型>ANFIS8 模型,表 明高海拔地区 ETo 对各气象要素的敏感程度表现为: $n > RH > u_2$,而中海拔和低海拔地区 ET_0 对各气象要 素的敏感程度表现为: n> u2>RH, 这与各气象要素和 ET_0 相关程度结论一致。

	表 4 汾河流域不同输入因子的 ANFIS 模型 ET ₀ 模拟精度	
Tah 4	The $ET_{\rm c}$ simulation accuracy of ANEIS model with different input factors in the Eenhe basis	in

	140.	+ Inc L.	1 0 Simulation	on accurac	<i>y</i> 01711111	model wit	in uniterent	input nuck		inte ousin		
推刑		高海拔	 地区		_	中海拔	 地区			低海拔	岗地区	
快至	R^2	NSE	RMSE	CPI	R^2	NSE	RMSE	CPI	R^2	NSE	RMSE	CPI
ANFIS1	0.837	0.830	0.394	16	0.766	0.758	0.496	16	0.842	0.832	0.391	16
ANFIS2	0.902	0.898	0.306	13	0.844	0.836	0.407	15	0.900	0.894	0.310	13
ANFIS3	0.892	0.890	0.319	14	0.860	0.849	0.397	13	0.888	0.833	0.391	14
ANFIS4	0.933	0.919	0.275	12	0.901	0.875	0.359	12	0.915	0.906	0.293	11
ANFIS5	0.881	0.880	0.333	15	0.880	0.852	0.382	14	0.902	0.889	0.320	15
ANFIS6	0.953	0.944	0.228	7	0.928	0.900	0.315	10	0.939	0.896	0.309	9
ANFIS7	0.936	0.936	0.243	10	0.933	0.924	0.279	7	0.955	0.954	0.205	6
ANFIS8	0.945	0.943	0.231	8	0.906	0.895	0.324	11	0.928	0.921	0.268	10
ANFIS9	0.962	0.957	0.201	6	0.942	0.919	0.290	8	0.946	0.894	0.306	8
ANFIS10	0.945	0.940	0.238	9	0.932	0.912	0.295	9	0.932	0.920	0.270	12
ANFIS11	0.937	0.936	0.246	11	0.945	0.942	0.245	6	0.950	0.944	0.225	7
ANFIS12	0.978	0.974	0.154	4	0.963	0.952	0.223	4	0.974	0.943	0.224	4
ANFIS13	0.971	0.968	0.173	5	0.957	0.946	0.224	5	0.959	0.955	0.203	5
ANFIS14	0.977	0.975	0.153	3	0.975	0.969	0.178	3	0.979	0.972	0.159	3
ANFIS15	0.980	0.979	0.140	2	0.977	0.973	0.167	2	0.975	0.971	0.162	2
ANFIS16	0.999	0.999	0.036	1	0.997	0.997	0.058	1	0.997	0.997	0.052	1

图 3 汾河流域 2000-2016 年 ANFIS 模型 ET0模拟误差箱线图

Fig.3 Box-plot of ET_0 simulation accuracy for each ANFIS model in Fenhe basin from 2000 to 2016 从表 4 与图 3 可以看出, ANFIS12 (T_{max}、T_{min}、 RH_{n} n_{n} R_{a} , ANFIS13 (T_{max} , T_{min} , RH_{n} u_{2} , R_{a}), ANFIS14 (T_{max} 、 T_{min} 、n、 u_2 、 R_a) 在高海拔地区 R^2 分别为 0.978、0.971、0.977, NSE 分别为 0.974、0.968、 0.975, RMSE 分别为 0.154、0.173、0.153 mm/d; 与 中海拔、低海拔地区对比(表 4)发现,ANFIS12、 ANFIS13、ANFIS14 在高海拔地区的适用性最好。在 输入 4 个气象要素和 R_a 时, ANFIS12、ANFIS13、

ANFIS14 模型的 CPI 排名在 3 个分区均为 4、5、3, 故 ANFIS14 在 3 个分区的模拟精度最高,其次为 ANFIS12,最后为ANFIS13;不同气象要素组合对汾 河流域 ET₀ 模拟精度影响程度表现为: 日照时间+风 速>日照时间+相对湿度>风速+相对湿度。不同气象 要素组合对 ET₀模拟精度影响不同,主要是因为不同 组合的机器学习算法种类和ET₀对气象要素的敏感性 存在差异。

在 16 个模型中, ANFIS16 模型(*T*_{max}、*T*_{min}、*RH*、 *n、u*₂、*R*_a)的模拟精度最高,平均 *R*²=0.998,平均 *NSE*=0.997,平均 *RMSE*=0.049 mm/d, ANFIS16 模型 在汾河流域具有非常强的适用性,尤其在高海拔地区。

2.3 ANFIS 月尺度误差分析

汾河流域不同海拔分区各月日均 *ET*₀ 见表 5,3 个分区日均 *ET*₀ 在全年内的变化趋势一致,月分布曲 线呈抛物线状,*ET*₀ 最大值出现在 6 月,最小值出现 在 12 月。

表 5 汾河流域	1960-	-2017	年各	月	日士	匀 <i>ET</i> (
----------	-------	-------	----	---	----	---------------

			Tab.5	Daily a	average ET	T_0 from 19	60 to 2017	in Fenhe	basin			mm/c	ł
分区	1月	2 月	3月	4 月	5 月	6月	7 月	8月	9月	10 月	11 月	12 月	
高海拔	0.73	1.20	2.19	3.67	4.85	5.16	4.57	3.84	2.96	2.03	1.19	0.72	
中海拔	0.95	1.41	2.38	3.72	4.70	4.89	4.41	3.78	2.76	1.89	1.23	0.90	
低海拔	0.89	1.40	2.38	3.56	4.49	5.27	4.72	4.11	2.91	1.91	1.13	0.79	

由表 4 可知,当输入的气象要素为 2、3、4、5 时,*ET*₀模拟精度最高的模型分别为 ANFIS2、ANFIS7、 ANFIS14、ANFIS16 模型。因此,选取 ANFIS2、 ANFIS7、ANFIS14、ANFIS16 模型,比较其在汾河 流域各月 *ET*₀的模拟精度,结果见图 4。各模型模拟 精度表现为 ANFIS16 模型>ANFIS14 模型>ANFIS7 模型>ANFIS2 模型。整体来看,4 个模型的模拟精 度表现为高海拔地区>低海拔地区>中海拔地区。 ANFIS16 模型各月 *RMSE* 平均为 0.034~0.073 mm/d。 其中,3 月份的模拟精度最差,*RMSE* 平均为 0.073

mm/d; 9月份的模拟精度最高, *RMSE* 平均为 0.034 mm/d; 春季(3-5月)的模拟精度较差, *RMSE* 平均为 0.060 mm/d; 在冬季(12月一次年2月)模拟精度最高, *RMSE* 平均为 0.036 mm/d。ANFIS14、ANFIS7、ANFIS2 模型各月 *RMSE* 平均为 0.091~0.280、0.129~0.411、0.153~0.533 mm/d。3个模型模拟精度年内变化趋势一致, 1-5月呈增加趋势, 5-12月呈减少趋势,5月份的模拟精度最差, *RMSE*分别为0.280、0.411、0.533 mm/d, 1月份的模拟精度最高, *RMSE*分别为 0.091、0.129、0.153 mm/d。

Fig.4 Comparison of monthly RMSE of ET₀ simulation values in different regions of the Fenhe basin

2.4 ANFIS 模型与其他经验模型对比

选取 Hargreaves-Samani (H-S)、Irmark-Allen (I-A) 和 Makkink 共 3 种经验模型,以 T_{max} 、 T_{min} 、 R_a 作为 输入因子时,将 ANFIS2 模型与 H-S 模型对比;以 T_{max} 、 T_{min} 、n、 R_a 作为输入因子时,将 ANFIS7 模型 与 Makkink 模型对比;以 T_{max} 、 T_{min} 、RH、n、 R_a 作 为输入因子时,将 ANFIS12 模型与 I-A 模型对比, 结果见表 6。从表 6 可以看出,基于 T_{max} 、 T_{min} 、 R_a 构建的 ANFIS2 模型在各分区的模拟精度高于 H-S 模 型,基于 T_{max} 、 T_{min} 、n、 R_a 构建的 ANFIS7 模型在各 分区的模拟精度高于 Makkink 模型,基于 T_{max} 、 T_{min} 、 *RH、n、R*_a构建的 ANFIS12 模型在各分区的模拟精 度高于 I-A 模型。一方面,在构建 ANFIS 模型时, 考虑到 *ET*₀存在周期性的变化规律,因此在训练 ANFIS模型时选取了与*ET*₀周期变化规律相似的隶属 函数,以提高模型的模拟精度;另一方面,*ET*₀与各 输入因子之间存在复杂的非线性关系,H-S、I-A、 Makkink 模型并不能完全反映这种非线性关系,而 ANFIS 模型则在训练样本时采用最小二乘法和反向 传播算法对参数进行优化调整,在训练样本过程中更 好地反映了这种非线性关系,从而提高了模型模拟精

观律相似的隶属 度。当输入因子相同时,ANFIS 模型的模拟精度优于 方面, ET_0 与各 其他 3 种经验模型。在仅有气温资料($T_{max}, T_{min},$ 条, H-S、I-A、 R_a)时,ANFIS2 模型可以代替 H-S 模型作为汾河流 域 ET_0 的模拟模型;在具有气温和日照时间资料时 (T_{max}, T_{min}, n, R_a), ANFIS7 模型可取代 Makkink 模型;在具有气温、日照时间和相对湿度资料时($T_{max},$ 高了模型模拟精 T_{min}, n, RH, R_a), ANFIS12 可取代 I-A 模型。 素 6 ANFIS 模型与其他模型精度比较

模型	高海拔地区			•	中海拔地区			低海拔地区			
快空	R^2	NSE	RMSE	R^2	NSE	RMSE	R^2	NSE	RMSE		
ANFIS2	0.902	0.898	0.306	0.844	0.836	0.407	0.900	0.894	0.310		
H-S	0.887	0.883	0.340	0.833	0.824	0.412	0.894	0.891	0.330		
ANFIS7	0.936	0.936	0.243	0.933	0.924	0.279	0.955	0.954	0.205		
Makkink	0.905	0.903	0.311	0.915	0.913	0.294	0.928	0.927	0.271		
ANFIS12	0.978	0.974	0.154	0.963	0.952	0.223	0.974	0.963	0.184		
I-A	0.863	0.858	0.376	0.863	0.858	0.375	0.917	0.915	0.291		

Tab.6 Comparison of accuracy between ANFIS model and other models

2.5 ANFIS 模型可移植性分析

由表 4 可知, ANFIS14、ANFIS16 模型模拟精度 较高。为验证构建的 ANFIS 模型在汾河流域的泛化 能力和可移植性,首先在高海拔、中海拔、低海拔地 区各随机选择 1 个站点,作为基准站,然后在各分区 再选取 1 个站点作为验证站;用基准站已经建立的 ANFIS14、ANFIS16 模型去计算验证站的 *ET*₀,并将 计算结果与 FAO P-M 模型计算的标准 *ET*₀进行比较, 分析模型的可移植性。构建的 18 个组合方案见表 7。 从表 7 可以看出,18 个组合方案下的 ANFIS 模型精 度均能满足要求,*R*² 为 0.955~0.998,*NSE* 为 0.939~0.998,*RMSE* 为 0.050~0.247 mm/d。因此, ANFIS 模型在汾河流域不同海拔分区之间具有很强 的可移植性,可将已经构建的 ANFIS 模型应用到汾 河流域其他地区。

表 7 汾河流域不同站点 ANFIS 模型可移植性分析 Tab.7 Portability analysis of ANFIS models between

different sites in Fenhe basin											
模型	基准站	验证站	R^2	NSE	RMSE						
		五寨	0.965	0.963	0.184						
	兴县	太原	0.965	0.963	0.197						
		临汾	0.971	0.967	0.177						
		兴县	0.978	0.974	0.158						
ANFIS14	太原	太谷	0.977	0.967	0.191						
		临汾	0.985	0.976	0.150						
		侯马	0.977	0.970	0.163						
	临汾	介休	0.955	0.939	0.247						
		兴县	0.973	0.967	0.178						
		兴县	0.998	0.997	0.051						
	五寨	太原	0.993	0.993	0.088						
		临汾	0.988	0.985	0.119						
		兴县	0.994	0.990	0.100						
ANFIS16	太谷	太原	0.998	0.998	0.050						
		临汾	0.995	0.990	0.097						
		临汾	0.996	0.994	0.074						
	侯马	介休	0.992	0.979	0.143						
		兴县	0.992	0.990	0.097						

3 讨 论

太阳辐射是作物蒸散发过程主要的能量来源,其 缺失会对 ET₀ 模拟计算的精度产生较大影响^[24]。 Hargreaves 等^[7]利用地球外辐射(Ra)和气温差来推 求太阳辐射,建立了 Hargreaves-Samani 模型。受此 启发,本研究利用汾河流域及附近7个气象站点逐日 气象资料 (T_{max} 、 T_{min} 、RH、n、 u_2) 和 R_a 建立了基 于自适应模糊推理系统(ANFIS)的参考作物蒸散量 (ET_0) 计算模型,通过对比发现,输入参数中引入 R_a 后, ANFIS 模型的 R^2 平均增加了 0.036, NSE 平均 增加了 0.041, RMSE 平均降低了 0.077 mm/d, 表明 将 R。作为输入参数能有效降低 ANFIS 模型的模拟误 差。众多学者采用 GRNN^[3]、TOPSIS^[13]、RF^[17]、 MARS^[18]、LSTM^[25]、GatBoost^[26]等机器学习模型对 不同气候区的 ET₀ 进行了模拟计算,研究均表明将 R。作为机器学习模型的输入参数可有效提高模型的 模拟精度,这与本研究结论一致。由于太阳辐射主要 受日地相对距离和太阳高度角影响,而 R_a 是表征地 理位置差异的重要因素,能很好地反映这2个因素的 综合影响,因此,引入 Ra 在一定程度上可代表太阳 辐射,从而提高机器学习模型的模拟精度。

在缺乏气象资料时, ANFIS 模拟精度高于其他经验模型, 可满足估算 *ET*₀的精度要求: 需要指出的是, 在气象资料完整时, ANFIS 模型与 FAO 56 P-M 模型 所输入的气象要素相同,但计算结果存在一定差异, 主要因为 FAO 56 P-M 模型是基于空气动力学和能量 平衡方程建立的,较 ANFIS 模型物理意义更为明确, 所以在气象资料完整的条件下, ANFIS16 不能代替 FAO-56 P-M 模型^[27]。

本研究根据海拔高度将汾河流域划分为高海拔、

中海拔、低海拔 3 个分区,虽在一定程度上可反映 ANFIS 模型在不同海拔的适用性,但汾河流域地形起 伏较大,受气象站点资料限制,仅选取 7 个气象站点 有一定的局限性;输入不同气象要素组合对模型计算 *ET*₀ 的精度起着主要作用^[28],本文仅构建了 16 种 ANFIS 模型,因此,后续研究中应选取更多的气象站 点和输入组合,充分考虑各分区自然地理条件和气候 差异,建立更为精确的基于 ANFIS 的 *ET*₀模拟计算 模型。

4 结 论

1)输入因子不同时,ANFIS 模型的模拟精度不同。仅输入 T_{max}、T_{min}、R_a的 ANFIS2 模型模拟精度能满足要求,随着输入气象要素数量的增加,模拟精度不断提升。在缺少气象资料条件下,基于 T_{max}、T_{min}、 RH、u₂、R_a的 ANFIS13 模型是汾河流域最适宜的 ET₀ 模拟计算模型。

2)ANFIS 模型的精度要高于 Hargreaves-Samani、 Makkink、Irmark-Allen 经验模型。在仅有 *T*_{max}、*T*_{min}、 *R*_a资料时,可用 ANFIS2 模型替代 Hargreaves-Samani 模型;具有 *T*_{max}、*T*_{min}、*n*、*R*_a资料时,可用 ANFIS7 模型替代 Makkink 模型;具有 *T*_{max}、*T*_{min}、*n*、*R*_a、*RH* 资料时,可用 ANFIS12 模型替代 Irmark-Allen 模型。

3) ANFIS 模型在汾河流域不同分区呈现出很强的泛化能力与可移植性,在缺少资料的地区无法建立 ANFIS 模型时,可使用临近站点已建立的 ANFIS 模型模拟计算 *ET*₀。

(作者声明本文无实际或潜在利益冲突)

参考文献:

- ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration: Guidelines for computing crop water requirements[M]. Rome: FAO Irrigation and Drainage Publications No.56, 1998.
- [2] 曾丽红,宋开山,张柏,等.近 60 年来东北地区参考作物蒸散量时 空变化[J]. 水科学进展, 2010, 21(2): 194-200.
 ZENG Lihong, SONG Kaishan, ZHANG Bai, et al. Spatiotemporal variability of reference evapotranspiration over the Northeast Region of China in the last 60 years[J]. Advances in Water Science, 2010, 21(2): 194-200.
- [3] 冯禹,崔宁博,龚道枝.机器学习算法和 Hargreaves 模型在四川盆 地 ET₀计算中的比较[J].中国农业气象, 2016, 37(4): 415-421.
 FENG Yu, CUI Ningbo, GONG Daozhi. Comparison of machine learning algorithms and Hargreaves model for reference evapotranspiration estimation in Sichuan Basin[J]. Chinese Journal of Agrometeorology, 2016, 37(4): 415-421.
- [4] 王振龙,顾南,吕海深,等. 基于温度效应的作物系数及蒸散量计算 方法[J]. 水利学报, 2019, 50(2): 242-251.
 WANG Zhenlong, GU Nan, LYU Haishen, et al. Calculation of crop coefficient and evapotranspiration based on temperature effect[J]. Journal of Hydraulic Engineering, 2019, 50(2): 242-251.

[5] SENTELHAS P C, GILLESPIE T J, SANTOS E A. Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada[J]. Agricultural Water Management, 2010, 97(5): 635-644.

[6] 谢锐敏, 崔宁博, 李卓, 等. 中国粮食主产区主要气象因子时空演变特 征及其对参考作物蒸散量影响[J]. 灌溉排水学报, 2017, 36(9): 81-89. XIE Ruimin, CUI Ningbo, LI Zhuo, et al. Spatiotemporal variation of main meteorological factors and their impact on reference crop evapotranspiration in main agricultural production areas in China[J]. Journal of Irrigation and Drainage, 2017, 36(9): 81-89.

- [7] HARGREAVES G H, SAMANI Z A. Reference crop evapotranspiration from temperature[J]. Applied Engineering in Agriculture, 1985, 1(2): 96-99.
- [8] MAKKINK G F. Testing the Penman formula by means of lysimeters[J]. Journal of the Institution of Water and Environment Management, 1957, 11: 277-288.
- [9] IRMAK S, MUTIIBWA D, PAYERO J, et al. Modeling soybean canopy resistance from micrometeorological and plant variables for estimating evapotranspiration using one-step Penman-Monteith approach[J]. Journal of Hydrology, 2013, 507: 1-18.
- [10] FITZPATRICK E A. An appraisal of advectional contributions to observed evaporation in Australia using an empirical approximation of Penman's potential evaporation[J]. Journal of Hydrology, 1968, 6(1): 69-94.
- [11] KHAIRAN H E, ZUBAIDI S L, MUHSEN Y R, et al. Parameter optimisation-based hybrid reference evapotranspiration prediction models: A systematic review of current implementations and future research directions[J]. Atmosphere, 2023, 14(1): 77.
- [12] 白一茹,王幼奇,王建宇.宁夏荒漠草原区参考作物蒸散量估算方法比较[J]. 灌溉排水学报,2015,34(11):89-92.
 BAI Yiru, WANG Youqi, WANG Jianyu. Comparison of many equations for calculating reference corp evapotranspiration in hungriness grassland areas of Ningxia[J]. Journal of Irrigation and Drainage, 2015, 34(11): 89-92.
- [13] 殷昌军,桂东伟,刘云飞,等.新疆地区潜在蒸散量计算模型适用性 评价[J]. 灌溉排水学报, 2022, 41(2): 75-82.
 YIN Changjun, GUI Dongwei, LIU Yunfei, et al. Assessing different formulae for estimating potential evapotranspiration in Xinjiang[J]. Journal of Irrigation and Drainage, 2022, 41(2): 75-82.
- [14] 姜婷,崔宁博,贾悦,等.利用改进的 Hargreaves 模型计算川中丘陵 区参考作物蒸散量[J]. 灌溉排水学报, 2016, 35(S2): 63-66.
 JIANG Ting, CUI Ningbo, JIA Yue, et al. Calculate reference crop evapotranspiration in hilly region of central Sichuan Basin by improved Hargreaves model[J]. Journal of Irrigation and Drainage, 2016, 35(S2): 63-66.
- [15] RAI P, KUMAR P, AL-ANSARI N, et al. Evaluation of machine learning versus empirical models for monthly reference evapotranspiration estimation in Uttar pradesh and uttarakhand states, India[J]. Sustainability, 2022, 14(10): 5 771.
- [16] FERREIRA L B, DA CUNHA F F, FERNANDES FILHO E I. Exploring machine learning and multi-task learning to estimate meteorological data and reference evapotranspiration across Brazil[J]. Agricultural Water Management, 2022, 259: 107 281.
- [17] 王升,付智勇,陈洪松,等.基于随机森林算法的参考作物蒸发蒸腾 量模拟计算[J]. 农业机械学报,2017,48(3): 302-309.
 WANG Sheng, FU Zhiyong, CHEN Hongsong, et al. Simulation of reference evapotranspiration based on random forest method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 302-309.
- [18] 陈宣全,崔宁博,李继平,等.多元自适应回归样条算法模拟川中丘 陵区参考作物蒸散量[J].农业工程学报,2019,35(16):152-160.
 CHEN Xuanquan, CUI Ningbo, LI Jiping, et al. Simulation of reference

crop evapotranspiration in hilly area of central Sichuan based on MARS[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(16): 152-160.

- [19] 刘小强,代智光,吴立峰,等. GPR、XGBoost和 CatBoost模拟江西地 区参考作物蒸散量的适应性研究[J]. 灌溉排水学报, 2021, 40(1): 91-96. LIU Xiaoqiang, DAI Zhiguang, WU Lifeng, et al. Comparing the performance of GPR, XGBoost and CatBoost models for calculating reference crop evapotranspiration in Jiangxi Province[J]. Journal of Irrigation and Drainage, 2021, 40(1): 91-96.
- [20] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016.
 ZHOU Zhihua. Machine learning[M]. Beijing: Tsinghua University Press, 2016.
- [21] 国家质量监督检验检疫总局,中国国家标准化管理委员会. 气象干 旱等级: GB/T 20481-2017[S]. 北京:中国标准出版社, 2017.
- [22] JANG J S R. ANFIS: Adaptive-network-based fuzzy inference system[J]. IEEE Transactions on Systems Man and Cybernetics,1993, 23(3): 665-685.
- [23] 尹春艳,陈小兵,刘虎,等.黄河三角洲参考作物腾发量计算方法适 宜性研究[J].灌溉排水学报,2017,36(6):36-41,108.
 YIN Chunyan, CHEN Xiaobing, LIU Hu, et al. Comparison of different methods for calculating evapotranspiration of crops in the Yellow River Delta[J]. Journal of Irrigation and Drainage, 2017, 36(6): 36-41, 108.
- [24] 夏兴生,朱秀芳,潘耀忠,等.地表太阳辐射经验值对参考作物需水量计算的影响[J].农业机械学报,2020,51(2):254-266.
 XIA Xingsheng, ZHU Xiufang, PAN Yaozhong, et al. Influence of solar

radiation empirical values on reference crop evapotranspiration calculation in different regions of China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 254-266.

- [25] 任传栋,王志真,马钊,等. 基于深度学习及传统机器学习模型估算 山东省参考作物蒸散量[J]. 节水灌溉, 2022(3): 67-74. REN Chuandong, WANG Zhizhen, MA Zhao, et al. Estimation of reference crop evapotranspiration in Shandong Province based on deep learning and traditional machine learning model[J]. Water Saving Irrigation, 2022(3): 67-74.
- [26] 吴天傲,李江,张薇,等. 基于类别特征编码的参考作物蒸散量预报 模型[J]. 应用基础与工程科学学报, 2022, 30(6): 1 402-1 419.
 WU Tian'ao, LI Jiang, ZHANG Wei, et al. A novel reference evapotranspiration forecasting model based on categorical feature encoding methods[J]. Journal of Basic Science and Engineering, 2022, 30(6): 1 402-1 419.
- [27] 李可利,张鑫. 基于 ANFIS 的陕西省参考作物蒸散量计算[J].自然资源学报, 2020, 35(6): 1 472-1 483.
 LI Keli, ZHANG Xin. Calculation of reference crop evapotranspiration in Shaanxi Province based on ANFIS[J]. Journal of Natural Resources, 2020, 35(6): 1 472-1 483.
- [28] FAN Junliang, YUE Wenjun, WU Lifeng, et al. Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China[J]. Agricultural and Forest Meteorology, 2018, 263: 225-241.

Simulation research of reference crop evapotranspiration based on ANFIS in Fenhe basin of China

GE Jie¹, LIU Yuan^{1,2*}, LUO Shuqi³, CAO Qixin¹

(1. Power China Northwest Engineering Corporation Limited, Xi'an 710065, China;

2. Shaanxi Provincial Water Ecological Environment Engineering Technology Research Center, Xi'an 710065, China;

3. Northwest A&F University, Yangling 712100, China)

Abstract: [Objective]In order to effectively improve the calculation accuracy of reference crop evapotranspiration(ET_0) in Fenhe basin, [Method] Daily meteorological data in the past 58 years (1960—2017) were collected from seven meteorological stations in Fenhe basin and it's vicinity. According to the combinations of different meteorological elements, 16 ET_0 calculation models were built based on adaptive network-based fuzzy inference system (ANFIS), and were compared with Hargreaves-Samani, Irmark-Allen and Makkink, which applicability were evaluated.

(Result **)** ①The non-linear relation between ET_0 and each input factor can be well displayed by ANFIS model. The simulation accuracy of ANFIS2 model established by only inputting T_{max} , T_{min} and R_a can meet the usage requirements (R^2 =0.882, *NSE*=0.876, *RMSE*=0.341 mm/d). With the increase of meteorological elements, the simulation accuracy of ANFIS model was improved. ②The simulation accuracy of ANFIS model was higher than that of Hargreaves-Samani, Irmark Allen, and Makkink models when same input condition. ③The ANFIS model had strong generalization ability and portability in the Fenhe basin. High accuracy was shown in mutual portability of ANFIS models established in different zone (R^2 =0.983, *NSE*=0.978, *RMSE*=0.134 mm/d). 【Conclusion】Therefore, the model based on adaptive network-based fuzzy inference system (ANFIS) can be used as a recommended model for the calculation of ET_0 in the Fenhe basin in the absence of meteorological data, which can provide a technical support for the efficient utilization of agricultural water resources in the Fenhe basin.

Key words: Fenhe basin; reference crop evapotranspiration(ET_0); ANFIS; portability

责任编辑: 白芳芳