English
引用本文:邓荣鑫,王文娟,魏义长,等.河南省冬小麦种植面积遥感监测及其时空特征研究[J].灌溉排水学报,2019,(9):-.
DENG Rong-xin,WANG wen-juan,WEI Yi-chang,et al.河南省冬小麦种植面积遥感监测及其时空特征研究[J].灌溉排水学报,2019,(9):-.
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
过刊浏览    高级检索
本文已被:浏览 2942次   下载 0  
分享到: 微信 更多
河南省冬小麦种植面积遥感监测及其时空特征研究
邓荣鑫1, 王文娟2, 魏义长1, 张富1, 李春静1, 刘文玉1
1.华北水利水电大学测绘与地理信息学院;2.河南财经政法大学资源与环境学院
摘要:
【目的】准确的实现河南省冬小麦种植面积的遥感提取,并探索河南省冬小麦种植面积的变化过程。【方法】将遥感监测与统计数据结合,以多时相MODIS遥感影像作为数据源,分析制定冬小麦信息的提取规则,利用统计数据辅助确定规则中的阈值选取,以减少阈值选取的主观性,提取出河南省2004-2013年冬小麦种植面积,并分析了河南省近10年来冬小麦种植面积的时空变化。【结果】遥感监测结果与各地市统计值的对比表明,两组数据具有较高的相关性(R2=0.938),在平原地区具有较高的精度,监测精度为89.5%,而在受到地形等因素影响的地区,冬小麦种植面积的分布相对破碎,监测精度具有较大误差,个别地区甚至不足50%。从空间上看,河南省冬小麦种植面积的空间分布总体较为集中,主要分布在河南中东部的黄河平原和淮河平原地区和豫西南的南阳盆地地区。从时间上看,河南省冬小麦种植区域总体变化较小,种植年份较为稳定的区域主要分布于豫东平原地区,累积种植年数显著增加地区主要分布于南阳盆地地区,累积种植年数显著减少地区的分布较为分散,无明显的分布趋势。【结论】基于遥感和统计数据相结合的方法可准确监测平原区冬小麦种植面积,河南省冬小麦种植面积的时空变化均较为稳定,为保障我国粮食安全发挥着重要作用。
关键词:  冬小麦面积;遥感;信息提取;时空分布
DOI:
分类号:S512.1+1
基金项目:
Remote estimation of winter wheat area and its spatio-temporal characteristics in Henan province
DENG Rong-xin1, WANG wen-juan2, WEI Yi-chang1, ZHANG Fu1, Li Chun-jing1, LIU Wen-yu1
1.College of Surveying and Geo-informatics,North China University of Water Resources and Electric Power;2.School of Resources and Environmental Sciences,Henan University of Economics and Law
Abstract:
It"s important for government and farmers to timely acquire the spatio-temporal distribution in winter wheat area. Remote sensing of winter wheat area based on time series images is an effective method. The key of this method is to determine the rules and threshold values, which will lead to uncertainty for the result to a certain extent. In order to estimating the winter wheat area more accurately, in this paper, we built the extracted rules using time series MODIS remote sensing images, and determined threshold values with the help of statistical data to extract the winter wheat area and its spatio-temporal variation in Henan province from 2004 to 2013. By comparing with statistical data of each counties, the result showed that, the mean precision was 89.5% in plain area, but the precision was low in some zones, where the distribution of winter wheat area was relative fragmental influenced by terrain, economic construction, et al. On the spatial scale, the distribution of winter wheat area in Henan province was centralized, mainly focused on Yellow River Plain and Huai River Plain of Henan province. On the temporal scale, the change of winter wheat area in Henan province was not obvious, the least change was located in the east of Henan province, the significantly increased zone was in the Nanyang Basin, and the significantly reduced zone was dispersive. The study provides a new method for remotely monitoring winter wheat area and decision support for food production and management.
Key words:  winter wheat area; remote sensing; information extraction; spatio-temporal distribution