English
引用本文:叶道星,李 浩,马秋妍,等.采用近似模型和NSGA-II遗传算法的旋流泵性能优化研究[J].灌溉排水学报,2019,38(7):76-83.
,et al.采用近似模型和NSGA-II遗传算法的旋流泵性能优化研究[J].灌溉排水学报,2019,38(7):76-83.
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1613次   下载 227 本文二维码信息
码上扫一扫!
分享到: 微信 更多
采用近似模型和NSGA-II遗传算法的旋流泵性能优化研究
叶道星, 李 浩, 马秋妍, 韩启彪, 孙秀路
1.中国农业科学院 农田灌溉研究所/河南省节水农业重点实验室, 河南 新乡 450002;2. 西华大学 流体及动力机械教育部重点实验室, 成都 610039; 3.河南科技学院, 河南 新乡 453003
摘要:
旋流泵无叶腔宽度、叶片数和叶片宽度是影响旋流泵性能中最重要的几何参数。【目的】建立旋流泵性能优化方法,为今后的工程提供参考。【方法】采用中心复合的方法对无叶腔宽度L、叶片数Z和叶片出口宽度b2进行了试验设计,使用CFD数值计算获得了样本的性能特性,而后采用Kriging模型建立了几何参数与旋流泵效率和叶片表面剪切应力的关系,最后利用非支配排序遗传算法对几何参数进行多目标寻优并进行了性能预测和对比分析。【结果】研究确定旋流泵最优几何参数L为25 mm、Z为8枚、b2为26.45 mm;优化后旋流泵无叶腔的宽度降低了16.67%,叶轮的叶片数增加了1枚,叶片的出口宽度增加了25.95%。优化后旋流泵的效率显著提高,同时叶片的表面剪切应力降低;在设计工况点,旋流泵的效率提高了1.06%,叶片平均剪切应力从优化前的274.37 Pa减少至204.57 Pa,降低了25.44%;优化后消除了在叶片的前缘处较大的剪切应力;叶片的表面的剪切应力在靠近叶片的出口处得到显著抑制。【结论】通过数值模拟验证了中心复合的方法是可行,提高了旋流泵性能。
关键词:  旋流泵; 性能优化; 叶片表面剪切应力; 效率; NSGA-II遗传算法
DOI:10.13522/j.cnki.ggps.20190018
分类号:
基金项目:
Optimal Design of Vortex Pump Using Approximate Model and the Non-dominated Sorting Genetic Algorithm
YE Daoxing, LI Hao, MA Qiuyan,HAN Qibiao,SUN Xiulu
1.Farmland Irrigation Research Institute, CAAS/Key Laboratory of Water-saving Agriculture of Henan Province, Xinxiang 450002, China; 2.Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University,Chengdu 610039, China; 3.Henan Institute of Science and Technology, Xinxiang 453002, China
Abstract:
【Objective】The cavity width L, blade width b2 and the number of blades Z are the most important geometric parameters affecting the performance of vortex pump. This paper aims to present a method to optimize the vortex pump.【Method】 The study was based on approximate model and the non-dominated sorting genetic algorithm II (NSGA-II), in which the pump cavity length, blade width and the number of blades were calculated using the central composite design of DoE (design of experiment). The performance of the designed pump was examined using CFD, and the effect of L, b2 and Z on vortex pump efficiency and shear stress on the blade wall was calculated using the Kriging model. The NSGA-II was used to optimize the geometric parameters. 【Result】The optimal parameters calculated from the methods were L=25 mm, Z=8, b2=26.45 mm.【Conclusion】We proved that CFD and NSGA-II can be used in a combination to calculate the optimal parameters of the vortex pump, and they can significantly improve efficiency of the pump and reduce the shear stress on the blade. Our results revealed that the optimization can reduce the width of the non-blade cavity by 16.67%, and increase the number of blades of the impeller and the outlet width of the blade by 1 and 25.95% respectively. At the design flow rate, the optimal design increased pump efficiency by 1.06% and reduced the average shear stress on the blade from 274.37 Pa to 204.57 Pa. The optimal design made the shear stress on the blade more uniform, in addition to reducing the shear stress on the outlet of the blade.
Key words:  vortex pump, performance optimization, blade surface shear stress, efficiency; NSGA-II algorithm