English
引用本文:王飞宇,李肖杨,贾军伟,等.基于不同综合水质评价方法的长江流域水质时空差异性对比分析[J].灌溉排水学报,2023,42(10):74-84.
WANG Feiyu,LI Xiaoyang,JIA Junwei,et al.基于不同综合水质评价方法的长江流域水质时空差异性对比分析[J].灌溉排水学报,2023,42(10):74-84.
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 518次   下载 418 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于不同综合水质评价方法的长江流域水质时空差异性对比分析
王飞宇,李肖杨,贾军伟,左凌峰,于雪静,张 彦
1.中国科学院 地理科学与资源研究所 陆地水循环及地表过程重点实验室,北京 100101; 2.中国农业科学院 农田灌溉研究所,河南 新乡 453002;3.郑州大学 水利与交通学院, 郑州 450001;4.中电建华东勘测设计研究院(郑州)有限公司,郑州 450000; 5.江苏省水文水资源勘测局南通分局,江苏 南通 226006
摘要:
【目的】探究不同综合水质评价方法在长江流域水质评价的运用,并进一步分析长江流域干流及主要支流水质变化特征及时空差异性。【方法】基于长江流域16个代表性监测断面2008—2018年的水质数据,利用水质综合指数法、水污染指数法和综合水质标识指数法对长江干流及其主要支流的流域水质状况进行综合评价,并采用M-K趋势检验、聚类分析和判别分析对流域水质的时空分布特征开展研究。【结果】在汛期和非汛期,乐山岷江大桥监测断面DO质量浓度最小分别为2.86 mg/L和3.16 mg/L,南昌滁槎断面CODMn和NH3-N质量浓度最大分别为10.00 mg/L和6.45 mg/L、2.23 mg/L和4.48 mg/L;非汛期时南昌滁槎断面采用水污染指数法评价,水质标准IV类及以上监测次数的占比最大为31.82%,乐山岷江大桥断面采用水质综合指数法评价,处于水质标准IV类及以上监测次数的占比最大为19.70%;水质评价结果的良好程度为综合水质标识指数法>水质综合指数法>水污染指数法;乐山岷江大桥、长沙新港和南昌滁槎等断面水质评价结果的变化趋势最为显著且趋于好转;水质评价结果在空间上具有一定的差异性,乐山岷江大桥、长沙新港和南昌滁槎等断面的水质评价结果相对较差,岷江、湘江和赣江相较于长江其他河流的水质状况略差。【结论】不同综合水质评价方法对长江流域主要监测断面水质的评价结果具有一定差异性,且水质综合指数法的评价结果更能体现水质现状情况。
关键词:  长江流域;水质评价;时空差异;聚类分析
DOI:10.13522/j.cnki.ggps.2023102
分类号:
基金项目:
Comparative Analysis of Spatiotemporal Variability in Water Quality of the Yangtze River Based on Different Water Quality Evaluation Methods
WANG Feiyu, LI Xiaoyang, JIA Junwei, ZUO Lingfeng, YU Xuejing, ZHANG Yan
1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 2. Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; 3. School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China; 4. Huadong Engineering (Zhengzhou) Corporation Limited, PowerChina, Zhengzhou 450000, China; 5. Nantong Branch Bureau, Jiangsu Provincial Hydrology and Water Resources Investigation Bureau, Nantong, 226006, China
Abstract:
【Objective】A prerequisite for managing a catchment is to comprehensively understand the changes in its water quality. Using different methods, this paper comparatively analyzes the spatiotemporal variation in water quality of the Yangtze River, including its main streams and tributaries. 【Method】The study is based on water quality data collected from 2008 to 2018 from 16 monitoring sections within the basin. Various methods, including the comprehensive water quality index (WQI), water pollution index (WPI), and comprehensive water quality identification index (Iwq), were used to assess water quality. Additionally, statistical methods including the Mann-Kendall trend test, cluster analysis, and discriminant analysis were utilized to analyze the spatiotemporal variation in water quality.【Result】In flooding and non-flooding seasons, the section proximal to the Leshan Minjiang Bridge had minimum dissolved oxygen (DO) concentration, which is 2.86 mg/L and 3.16 mg/L, respectively. Conversely, the Nanchang Chucha section had maximum concentration of chemical oxygen demand (CODMn) and ammonia nitrogen (NH3-N), which was 10.00 mg/L and 6.45 mg/L, and 2.23 mg/L and 4.48 mg/L, respectively. In the non-flooding season, 31.82% of water in the Nanchang Chucha section achieved Class IV grade or higher (evaluated by WPI), whereas this figure reduced to 19.70% (evaluated by WQI) for the Leshan Minjiang Bridge section. The Iwq method yielded the highest water quality, followed by WQI and WPI. All three methods indicated that water quality had improved in the Leshan Minjiang Bridge, Changsha Xingang, and Nanchang Chucha sections. Water quality varied spatially, with poor quality observed in the Leshan Minjiang Bridge, Changsha Xinkang, and Nanchang Chucha sections, and slightly poor quality was found in the Minjiang, Xiangjiang, and Ganjiang sections.【Conclusion】The evaluation of water quality using different methods within the Yangtze River basin yielded varied results, with the WQI method working best.
Key words:  Yangtze River Basin; water quality evaluation; spatio-temporal differences; cluster analysis