English
引用本文:肖亚涛,王德哲,李世欣,等.不同Cd浓度处理下两玉米品种植株Cd分布富集和转运特性[J].灌溉排水学报,0,():-.
XIAO Ya-tao,WANG De-zhe,LI shixin,et al.不同Cd浓度处理下两玉米品种植株Cd分布富集和转运特性[J].灌溉排水学报,0,():-.
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
过刊浏览    高级检索
本文已被:浏览 323次   下载 0  
分享到: 微信 更多
不同Cd浓度处理下两玉米品种植株Cd分布富集和转运特性
肖亚涛1,2, 王德哲2, 李世欣2, 王龙2, 孙超祥3, 邵龙2, 郭魏1
1.中国农业科学院 农田灌溉研究所/农业水资源高效安全利用重点实验室;2.河南农业大学 机电工程学院 河南 郑州;3.河南农业大学 资源与环境学院 河南 郑州
摘要:
为明确不同镉(Cd)浓度胁迫对玉米Cd积累过程的影响效应,揭示玉米种植于Cd污染土壤的生产适用性,本研究采用田间微区试验设置6个Cd浓度处理,分别测定郑单985(ZD)和先玉335(XY)两玉米品种在不同Cd浓度处理下玉米植株中Cd的组织分布特征及各器官Cd浓度,分析各组织器官对Cd的富集和转运能力,并建立Cd浓度梯度和玉米各组织器官Cd浓度之间的相关性分析。在Cd污染处理下,Cd含量的分布主要集中于根系、叶和苞叶之中,其次为茎/穗轴,籽粒中Cd含量占比最少,仅为0.08%-5.12%;ZD籽粒中Cd含量随着Cd处理浓度的增大而增大,XY籽粒中Cd含量则在T3处理下达到最大值0.26 mg.kg-1。对比ZD和XY,ZD籽粒中Cd含量均高于XY,且在T4和T5处理下品种间差异显著(P< 0.05);富集和转运分析显示,ZD和XY植株根系富集能力最强,籽粒富集能力最弱,茎、叶和苞叶富集能力受Cd胁迫浓度和品种差异影响波动。同一Cd浓度处理下,根-叶和根-苞叶的转运能力最强,但存在品种差异和浓度效应;Cd浓度梯度与植株根系、茎、叶、苞叶、穗轴和籽粒中Cd含量均呈极显著相关(P< 0.01),其中与根系、茎、叶的相关系数分别达到0.973、0.961和0.963。玉米植株中Cd的分布、富集和转运均受Cd胁迫的浓度影响,且存在品种差异。在1.70-15.76 mg污染土壤上ZD和XY仅可作为饲料安全种植,相比较于ZD仅适用于1.70-6.71 mgkg-1Cd污染浓度范围,XY具有更好的生产适用性。
关键词:  玉米;镉;分布;富集;转运
DOI:
分类号:S511;X53
基金项目:
Distribution Enrichment and Transport Characteristics of Cd in Two Maize Varieties under different Cd Concentration Treatments
XIAO Ya-tao1,2, WANG De-zhe2, LI shixin2, WANG Long3, SUN Chaoxiang2, SHAO Long2, GUO Wei1
1.Key Laboratory of High-efficient and Safe Utilization of Agriculture Water Resources,Institute of Farmland Irrigation of CAAS,Chinese Academy of Agricultural Sciences;2.College of Mechanical and Electrical Engineering,Henan Agricultural University;3.College of Resources and Environment, Henan Agricultural University
Abstract:
【Objective】In order to clarify the effect of different Cd concentration stress on the Cd accumulation process in maize, and to reveal the suitability of maize planting in Cd contaminated soil,【Method】in this study, six Cd concentration treatments were used to determine the tissue distribution of Cd in maize plants of Zhengdan 985 (ZD) and Xiangyu 335 (XY) varieties under different Cd concentration treatments. We analyzed the enrichment and transport capacity of each tissue organ for Cd, and also established the correlation analysis between Cd concentration gradient and Cd concentration of maize tissues and organs.【Result】Under the Cd contamination treatment, the distribution of Cd content was mainly concentrated in the root system, leaves and bracts, followed by the stalk/ear axis, and the lowest percentage of Cd content in the seeds was 0.08%-5.12%; the Cd content in ZD seeds increased with the increase of Cd treatment concentration, while the Cd content in XY seeds reached the maximum value of 0.26 mg.kg-1 under T3 treatment. The enrichment and translocation analysis showed that ZD and XY plants had the strongest root enrichment capacity and the weakest seed enrichment capacity, while the enrichment capacity of stems, leaves and bracts fluctuated depending on the Cd stress concentration and varietal differences. Under the same Cd concentration treatment, root-leaf and root-bud transport capacity was the strongest, but there were varietal differences and concentration effects; Cd concentration gradients were highly significantly correlated (P< 0.01) with Cd content in the root system, stem, leaf, bract, rachis and seeds of the plants, with the correlation coefficients reaching 0.973, 0.961 and 0.963 for the root system, stem and leaf, respectively.【Conclusion】The distribution, enrichment and translocation of Cd in maize plants were affected by the concentration of Cd stress and there were varietal differences. ZD and XY could be grown safely as fodder only on 1.70-15.76 mg.kg-1Cd contaminated soils, and XY had better production suitability compared to ZD only for the 1.70-6.71 mg.kg-1Cd contamination concentration range.
Key words:  Maize; Cadmium; Distribution; Enrichment; Transport