中文
Cite this article:
【Print this page】   【Download the full text in PDF】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←Previous Article|Next article→ Archive    Advanced Search
This article has been:Browse 704Times   Download 626Times 本文二维码信息
scan it!
Font:+|=|-
DOI:10.13522/j.cnki.ggps.2021348
Experimental Study on Performance of Square Nozzle in Sprinkler Irrigation Systems under Low-intermediate Operating Pressure
HUA Lin, LI Hong, JIANG Yue, QIN Longtan
Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China
Abstract:
【Objective】The performance of sprinkler irrigation systems depends on many design factors and in this paper, we study the effect of orifice shape and the impact-arm of the nozzle on spraying characteristics when the systems are operated under low-intermediate pressure.【Method】The parameters characterizing the water droplets were measured by the 2D-dideo-distrometer. Taking the circular nozzle as the control, the effects of orifice shape on water droplet diameters, water application rate and kinetic energy intensity were measured and analyzed. We also studied the effects of the impact-arm on spraying performance of the square nozzle.【Result】The spraying characteristics of the square nozzle and circular nozzle were similar when the sprinkler irrigation system was operated under low-intermediate pressure. The orifice shape did not improve water distribution significantly, and the precipitation was mainly concentrated at the 73% range. In the regions proximal to the nozzle, the diameter and kinetic energy of the water droplets of the square nozzle were larger than that of the circular nozzle. Combining the square orifice with auxiliary water dispersing structure such as the impact-arm can enhance dissipation of the water jet and reduce the droplet kinetic energy at the out edge of the wetting area.【Conclusion】A dispersion structure combined with the square nozzles can overcome the disadvantages of large diameter and kinetic energy of water droplets, reduce the damage of the water droplets to soil and crops, and retain good hydraulic performance of the sprinkler irrigation system.
Key words:  square nozzle; low-intermediate operation pressure; sprinkler irrigation; hydraulic performance; droplets diameter; kinetic energy intensity