English
引用本文:温媛媛,郭青霞,王炎强.基于SEBS模型的岔口小流域蒸散量特征及影响因子研究[J].灌溉排水学报,2018,37(4):80-87.
WEN Yuanyuan,GUO Qingxia,WANG Yanqiang.基于SEBS模型的岔口小流域蒸散量特征及影响因子研究[J].灌溉排水学报,2018,37(4):80-87.
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1810次   下载 3016 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于SEBS模型的岔口小流域蒸散量特征及影响因子研究
温媛媛, 郭青霞, 王炎强
山西农业大学, 山西 太谷 030801;西北师范大学, 兰州 730070
摘要:
【目的】确定黄土丘陵沟壑区地表蒸散量及其影响因素,为岔口流域的干旱监测和水资源管理提供数据支持,并为大面积获取黄土丘陵沟壑区的蒸散量情况提供一定理论依据。【方法】基于SEBS模型,以永和县岔口流域为例,运用遥感方法,结合气象资料,对作物生长期4―10月遥感影像进行处理,估算出岔口流域的日蒸散量,分析了蒸散的分布规律,并对蒸散量与气候、地表温度、NDVI、地形参数等的关系进行了分析。【结果】遥感反演得到4月21日、6月8日、7月26日、8月27日、9月12日的流域平均日蒸散量分别为3.34、5.22、5.49、4.22和3.76 mm,反演蒸散量与Penman-Monteith公式计算流域参考作物蒸散量的平均相对误差为5.57%;流域土地利用类型的蒸散量均值排序为:林地>草地>耕地>园地>水域>居民点;时间序列上,蒸散量呈单峰型分布,7月蒸散量最高,且日蒸散量的变化与气温、地表温度呈较好的正相关,与NDVI间的关系表现不明显;空间尺度上蒸散量空间分布为:西北地区>东南地区>中部地区,且蒸散量分布与地表温度负相关关系,与NDVI之间有较好的正相关关系,与地形参数之间的相关关系不明确。【结论】基于SEBS模型对黄土丘陵沟壑区蒸散量的遥感反演具有较高的精度,影响日蒸散量变化的主要影响因素为气温和地表温度,而地表温度和NDVI则是影响岔口流域蒸散量空间分布主要因子。
关键词:  蒸散发; SEBS模型; 岔口流域; 影响因子
DOI:10.13522/j.cnki.ggps.2017.0439
分类号:
基金项目:
Evapotranspiration and the Factors Affecting It in Chakou Basin Studied with the SEBS Model
WEN Yuanyuan, GUO Qingxia, WANG Yanqiang
Shanxi Agricultural University, Taigu 030801, China; Northwest Normal University, Lanzhou 730070, China
Abstract:
【Objective】 This paper presents a case study in the Chakou catchment to determine the evapotranspiration and the factors impacting it in the Loess Plateau, aimed to provide data for diagnosing drought and improving water management. 【Method】 We calculated daily evapotranspiration and its spatial distribution of five crop growth seasons from April to October using the SEBS model, remote sensing and meteorological data measured in the catchment. We also analyzed the dependence of the evapotranspiration on climate, temperature, NDVI, as well as terrain parameters. 【Result】 The average daily evapotranspiration in the basin was 3.34, 5.22, 5.49, 4.22 and 3.76 mm on April 21, June 8, July 26, August 27 and September 12, respectively. Compared with the reference crop evapotranspiration calculated from the Penman-Monteith formula, the model had an average relative error of 5.57%. The impact of land usage on evapotranspiration was ranked in the order of forest land > grassland > arable land > garden plot > water area > residential area. The evapotranspiration peaked in July and had a positive correlation with air temperature and surface temperature. The impact of NDVI on evapotranspiration was negligible. Spatially, the magnitude of the evapotranspiration varied in the order of northwest > southeast > center. It was also found that the evapotranspiration was negatively correlated to the temperature on soil surface and positively related to NDVI, and had no noticeable correlation to the terrain parameters. 【Conclusion】 The daily evapotranspiration calculated from the SEBS model was consistent with measurements, affected mainly by air temperature and land-surface temperature. The surface temperature and NDVI impacted the spatial distribution of the evapotranspiration across the catchment.
Key words:  evapotranspiration; SEBS model; Chakou Basin; influencing factor