English
引用本文:苏婷婷,白燕英,魏占民.土默特右旗ET0对气象因子和相关参数的响应[J].灌溉排水学报,2018,37(3):110-114.
SU Tingting,BAI Yanying,WEI Zhanmin.土默特右旗ET0对气象因子和相关参数的响应[J].灌溉排水学报,2018,37(3):110-114.
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2072次   下载 2020 本文二维码信息
码上扫一扫!
分享到: 微信 更多
土默特右旗ET0对气象因子和相关参数的响应
苏婷婷, 白燕英, 魏占民
内蒙古农业大学 水利与土木建筑工程学院, 呼和浩特 010018
摘要:
【目的】研究ET0与气象因子和相关参数的响应性。【方法】以内蒙古包头市土默特右旗为研究区,采用ENVI5.3软件,遥感反演相关参数,分析了参考作物腾发量(ET0)与气象因素和相关参数的相关性和主成分。【结果】①在年尺度上,气象因素对ET0的相关性排序为:净辐射>日照时间>最高温度>相对湿度>最低温度>风速。在月尺度上,ET0在7月对最高温度和日照时间最敏感;4月ET0对相对湿度最敏感;5月对风速最敏感;净辐射与ET0相关性在4—10月都很显著;ET0与最低温度相关性不显著。在作物生长季,ET0主要受净辐射、日照时间、最高温度的影响。②3种相关参数NDVI、植被覆盖度、地表温度和ET0均显著正相关,NDVI的相关性最显著。③利用主成分分析得到主成分变量Z1、Z2代替了原始数据(最高温度、最低温度、相对湿度、日照时间、风速、NDVI、植被覆盖度、地表温度、净辐射),使复杂的研究变得简单。【结论】在作物生长季,ET0主要受净辐射、日照时间、最高温度的影响;在相关参数中,与NDVI的相关性最好。
关键词:  气象因素; 相关参数; 相关性; 主成分分析
DOI:10.13522/j.cnki.ggps.2017.0038
分类号:
基金项目:
Response of ET0 to Meteorological Factors and Related Parameters in Tumote Youqi
SU Tingting, BAI Yanying, WEI Zhanmin
College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
Abstract:
【Objective】 Study the response of ET0 and meteorological factors to the related parameters. 【Method】 The correlation and principal components between reference evapotranspiration (ET0) and meteorological factors and related parameters were analyzed by using ENVI5.3 software in the Tumote Youqi, Baotou City, Inner Mongolia. 【Result】 ①At the annual scale, the correlation of meteorological factors for ET0 was: net radiation>sunshine time>maximum temperature>relative humidity>minimum temperature>wind speed. On the month scale, ET0 was most sensitive to maximum temperature and sunshine time in July; In April ET0 was most sensitive to relative humidity; May was most sensitive to wind speed; net radiation and ET0 correlation was significant every month; ET0 has no significant correlation with minimum temperature. During the crop season, ET0 is mainly affected by net radiation, sunshine time, and maximum temperature. ②The correlation between NDVI, vegetation coverage, surface temperature and ET0 were significant, and all of them were positively correlated, NDVI was the most significant. ③Using the principal component analysis, the principal component variables Z1 and Z2 are substituted for the original data(maximum temperature, minimum temperature, relative temperature, sunshine time, wind speed, NDVI, vegetation coverage, surface temperature, net radiation). 【Conclusion】 During the growing season, ET0 is mainly affected by net radiation, sunshine time and maximum temperature. In related parameters, the correlation with NDVI is the best.
Key words:  meteorological factors; correlation parameters; correlation; principal component analysis