English
引用本文:蔡建辉,颜七笙.“一带一路”倡议下甘肃省灰水足迹测度及GM(1,1)模型预测研究[J].灌溉排水学报,2018,37(3):115-121.
CAI Jianhui,YAN Qisheng.“一带一路”倡议下甘肃省灰水足迹测度及GM(1,1)模型预测研究[J].灌溉排水学报,2018,37(3):115-121.
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2067次   下载 2604 本文二维码信息
码上扫一扫!
分享到: 微信 更多
“一带一路”倡议下甘肃省灰水足迹测度及GM(1,1)模型预测研究
蔡建辉, 颜七笙
东华理工大学 地球科学学院, 南昌 330013; 东华理工大学 理学院, 南昌 330013
摘要:
【目的】研究“一带一路”倡议下甘肃省水资源利用情况。【方法】采用灰水足迹模型,分析了2003—2015年甘肃省剩余灰水足迹、灰水足迹效率、水环境荷载指数指标,运用GM(1,1)模型定量预测了2016—2020年甘肃省生活、工业和农业部门的灰水足迹。【结果】①2015年甘肃省的灰水足迹为115.2亿 m3,各部门对灰水足迹的贡献度依次是:生活>农业>工业;②2003—2015年,灰水足迹总量呈上升趋势,但部分年段小幅下降,工业灰水大幅提高,增加了105.91%;③剩余灰水足迹总体呈上升趋势,2013—2015年增幅最大,增加了67.11%,说明甘肃省的水资源压力逐年加大,水污染不断加重、水质即将出现恶化;④灰水足迹效率提高了约2.3倍,表明在单位灰水足迹上能够创造出更多的GDP;甘肃省灰水足迹效率均值为38.62 元/m3,与中国平均灰水足迹效率42.21 元/m3相比,仍处较低水平;⑤水环境荷载指数呈波动上升趋势,在2003年基础上增长了1.2倍,2013年以来,该指数快速上升,逼近0.8,表明甘肃省的水环境压力在不断增大,所排污染物持续增多,存在水环境恶化风险。【结论】基于GM(1,1)模型预测,2016—2020年生活、工业灰水有所下降,到2020年将分别减少到6.976 9×109 m3和3.569 9×109 m3;农业灰水持续增长,2020年将达到7.620 6×109 m3,对水资源构成较大威胁。
关键词:  灰水足迹; 水污染程度; 灰水足迹效率; 水环境荷载指数; GM(1,1)预测
DOI:10.13522/j.cnki.ggps.2017.0247
分类号:
基金项目:
Measurement and GM (1,1) Prediction of Grey Water Footprint in Gansu Province under “The Belt and Road” Initiative
CAI Jianhui, YAN Qisheng
School Earth Science and Mapping Engineering, East China University of Technology, Nanchang 330013, China;.College of Science, East China University of Technology, Nanchang 330013, China
Abstract:
【Objective】 Study the situation of water resource utilization in Gansu province “The Belt and Road” initiative. 【Method】 The grey water footprint model was used to analyze the residual grey water footprint, grey water footprint efficiency and water environment load index of Gansu Province in 2003—2015 years, and 2016—2020 years, the grey water footprint of the life, industrial and agricultural sectors in Gansu during 2016-2020 were quantitatively predicted by the GM (1,1) model. 【Result】 The results showed that,①The grey water footprint of Gansu province was 11.52×109 m3 in 2015, and the contribution of three departments to grey water footprint was: Life > Agriculture > Industry; ②During the past 13 years, although the grey water footprint showed an upward trend from the total, it had declined in some years. The industrial grey water increased significantly, and it was about 105.91%;③The residual grey water footprint showed a upward tendency, the largest increase was during 2013—2015 and the value was 67.11%, it’s showed that the pressure of water resources was increasing year by year, the water pollution was increasing, and the water quality will deteriorate in Gansu province; ④The grey water footprint efficiency increased by about 2.3 times, it’s shown that more GDP can be created on the unit grey water footprint; the average efficiency of grey water footprint was 38.62 yuan/m3, comparing with average grey water footprint efficiency of China which was 42.21, it’s still at a low level; ⑤The water environmental load index showed a rising trend, and increased 1.2 times of that in 2003, since 2013, the index rose rapidly approached 0.8, it was showed that the pressure of water environment was increased, and the pollutants were increased continuously in Gansu province. 【Conclusion】 GM (1,1) prediction results showed that the grey water of life, industrial decreased during 2016—2020, it will be reduced to 6.976 9×109 m3 and 3.569 9×109 m3 respectively by 2020 ; the agricultural grey water continued to grow, it will reach 7.620 6×109 m3 by 2020, it will pose a greater threat to water resources.
Key words:  grey water footprint; water pollution degree; grey water footprint efficiency; water environmental load index; GM (1,1) prediction