English
引用本文:资添添,刘 静,宣柯炀.基于SWAT模型的黄河流域作物 水足迹及虚拟水流动研究[J].灌溉排水学报,2025,44(2):19-26.
ZI Tiantian,LIU Jing,XUAN Keyang.基于SWAT模型的黄河流域作物 水足迹及虚拟水流动研究[J].灌溉排水学报,2025,44(2):19-26.
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 429次   下载 915 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于SWAT模型的黄河流域作物 水足迹及虚拟水流动研究
资添添,刘 静,宣柯炀
1.河海大学 水灾害防御全国重点实验室,南京 210024;2.河海大学 水文水资源学院, 南京 210024;3.河海大学 长江保护与绿色发展研究院,南京 210024
摘要:
【目的】量化黄河流域作物水足迹及虚拟水流动模式。【方法】构建SWAT模型,以子流域为研究尺度,量化黄河流域作物水足迹,基于社会公平原则和引力法对虚拟水流动格局进行研究。【结果】2020年黄河流域作物水足迹高达769.09亿m3,绿水足迹占69.7%,中游地区作物水足迹显著大于上、下游地区,蓝水足迹和绿水足迹集中在5—8月;作物生产水足迹为0.72 m3/kg,呈北高南低的空间分布格局,作物生产蓝水足迹高值区主要分布在上中游地区;作物虚拟水流动总量为191.49亿m3,绿水流动总量大于蓝水流动总量,作物虚拟水输出区主要集中在流域北部,输入区主要分布于流域南部。【结论】未来需优化绿水调控与重点区域监管,合理分配灌溉用水、调整种植结构、采用节水技术实施虚拟水流动补偿机制。
关键词:  水足迹;虚拟水流动;SWAT模型;黄河流域;作物
DOI:10.13522/j.cnki.ggps.2024311
分类号:
基金项目:
Modelling crop water footprint and virtual water flow in the Yellow River Basin using the SWAT model
ZI Tiantian, LIU Jing, XUAN Keyang
1. The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210024, China; 2. College of Hydrology and Water Resources, Hohai University, Nanjing 210024, China; 3. Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210024, China
Abstract:
【Objective】 The Yellow River Basin, the second largest in China, plays a crucial role in food production in the country. In this paper, we analyze the spatiotemporal variations in agricultural water use efficiency and calculate water resource flow patterns and their optimal allocation at watershed scale in the basin. 【Method】 Using the SWAT model, the basin was divided into sub-basin units to calculate crop water footprints. Virtual water flows were analyzed using social equity principles and the gravitational force method. 【Result】In 2020, the total crop water footprint in the basin was 76.91 billion m3, with green water accounting for 69.7%. The middle reaches contributed the largest to the total water footprint, significantly surpassing upstream and downstream regions. Both blue and green water footprints exhibited seasonal variation, peaking between May and August. The average water footprint for crop production was 0.72 m3/kg, with notable spatial differences: high in the Northern regions and low in the South. High blue water footprints were predominantly in the upper and middle reaches. The total virtual water flow associated with crop production was 19.15 billion m3, with green water flow exceeding blue water flow. The Northern regions served as virtual water exporters, while the Southern regions were net importers.【Conclusion】Effective management of green water resources is essential for sustainable water use in the Yellow River Basin. Special attention is required for the middle reaches due to their higher water consumption. Key strategies include prioritizing irrigation water allocation in the regions with low blue water footprints, optimizing crop planting structures, adopting water-saving technologies, and establishing compensation mechanisms for virtual water flow. These measures will promote the sustainable utilization of water resources throughout the basin.
Key words:  water footprint; virtual water flow; SWAT model; Yellow River Basin; crops