English
引用本文:崔 嵩,吴 锦,张乃丰,等.基于SCSSA-CNN-BiLSTM模型的冬小麦生育期 日土壤水分预测研究[J].灌溉排水学报,2025,44(8):1-8.
CUI Song,WU Jin,ZHANG Naifeng,et al.基于SCSSA-CNN-BiLSTM模型的冬小麦生育期 日土壤水分预测研究[J].灌溉排水学报,2025,44(8):1-8.
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 135次   下载 93 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于SCSSA-CNN-BiLSTM模型的冬小麦生育期 日土壤水分预测研究
崔 嵩,吴 锦,张乃丰,刘 猛,胡永胜,何亚男,顾 越,龙欣雅,王振龙
1.东北农业大学 水利与土木工程学院,哈尔滨 150030;2.河海大学 水文水资源学院,南京 210098; 3.安徽省(水利部淮委)水利科学研究院 五道沟水文实验站,安徽 蚌埠 233000; 4.南京水利科学研究院,南京 210029
摘要:
【目的】为准确预测大田土壤含水率,便于指导农业生产和节水灌溉。【方法】本文结合正余弦和柯西变异的麻雀优化算法(SCSSA)与卷积神经网络(CNN)、双向长短期记忆神经网络(BiLSTM)进行组合,构建了SCSSA-CNN-BiLSTM土壤水分混合预测模型。利用五道沟实验站2022年10月—2023年6月冬小麦全生育期的气象因子和3个土层(10、30、50 cm)土壤含水率,对冬小麦全生育期根系密集层20 cm土层土壤含水率进行预测。【结果】①SCSSA-CNN-BiLSTM模型能有效捕捉土壤水分时空演变规律,经SCSSA优化后的模型预测精度显著提升,RMSE从1.394降至0.774,降幅达44.5%;②SCSSA-CNN-BiLSTM模型展现出较好的预测能力,模型的土壤含水率预测值与实测值基本吻合。③与GA(遗传算法)、PSO(粒子群算法)、SSA(麻雀搜索算法)相比,SCSSA(麻雀优化算法)通过融合多重优化策略显著提升了模型超参数优化性能,模型可用于冬小麦生育期土壤水分预测。【结论】本文提出的SCSSA-CNN-BiLSTM模型对冬小麦20 cm土层土壤含水率的预测精度较高,可为农业实时适量灌溉提供科学依据。
关键词:  神经网络;麻雀优化算法;土壤水分预测;冬小麦
DOI:10.13522/j.cnki.ggps.2025183
分类号:
基金项目:
Daily soil moisture prediction during winter wheat growth season using an SCSSA-CNN-BiLSTM model
CUI Song, WU Jin, ZHANG Naifeng, LIU Meng, HU Yongsheng, HE Yanan, GU Yue, LONG Xinya, WANG Zhenlong
1. School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; 2. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; 3. Wudaogou Hydrological Experimental Station, Anhui Academy of Water Conservancy Sciences, Bengbu 233000, China; 4. Nanjing Institute of Water Conservancy Science, Nanjing 210029, China
Abstract:
【Objective】Accurate prediction of field soil moisture is crucial for managing agricultural production and water-saving irrigation. This paper proposes a new method to predict soil moisture changes.【Method】The hybrid deep learning model, SCSSA-CNN-BiLSTM, was integrated with Sine Cosine Cauchy Sparrow Search Algorithm (SCSSA) for hyperparameter optimization. It was then combined with Convolutional Neural Networks (CNN) for spatial feature extraction and Bidirectional Long Short-Term Memory (BiLSTM) networks for temporal sequence learning. The model was trained using meteorological data and soil moisture measured at three depths - 10, 30 and 50?cm - at the Wudaogou Experimental Station between October 2022 and June 2023. It was then used to predict soil moisture in the 0-20 cm root zone during the winter wheat growing season.【Result】① The optimized model accurately captured the spatiotemporal variation in soil moisture, with the SCSSA enhancement reducing RMSE by 44.5% from 1.394 to 0.774. ② The proposed model was superior to other methods; its statistical metrics are R2=0.960, RMSE=0.774, MSE=0.599, MAE=0.528 and MAPE=1.84%. The predicted results agreed well with observed data. ③ Comparative analysis showed that SCSSA optimization significantly outperformed GA, PSO and SSA in hyperparameter tuning.【Conclusion】The SCSSA-CNN- BiLSTM model is accurate for predicting soil moisture in the 0-20 cm root zone of winter wheat. It can be used for real-time irrigation management.
Key words:  neural network; sparrow optimization algorithm; soil moisture prediction; winter wheat