English
引用本文:邢佳诚,何柳月,薛景元,等.WHCrop-humid:适用于西南季节性干旱地下水 浅埋区的作物模型与应用[J].灌溉排水学报,2025,44(8):20-32.
XING Jiacheng,HE Liuyue,XUE Jingyuan,et al.WHCrop-humid:适用于西南季节性干旱地下水 浅埋区的作物模型与应用[J].灌溉排水学报,2025,44(8):20-32.
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 125次   下载 95 本文二维码信息
码上扫一扫!
分享到: 微信 更多
WHCrop-humid:适用于西南季节性干旱地下水 浅埋区的作物模型与应用
邢佳诚,何柳月,薛景元,李 俊
1.四川大学 灾后重建与管理学院,成都 610207;2.浙江大学 海洋学院,浙江 舟山 316021; 3.东海实验室,浙江 舟山 316100;4.四川大学 水利水电学院,成都 610207
摘要:
【目的】针对西南季节性干旱地区地下水浅埋的特定环境条件,构建了改进的WHCrop-humid作物生长模型,以提高其对该地区作物耗水与产量模拟的精度和适用性。【方法】WHCrop-humid模型增加了对土壤非饱和带-地下水水分交换、地表径流、作物根系生长过程的模块,能够更准确地反映地下水对作物生长的贡献、地表径流对土壤水分状况的影响以及光-温-水对作物生长的影响。【结果】基于四川省盐亭农田生态系统国家野外科学观测研究站2005、2006年和2007年3个观测场的玉米动态生长数据,对模型进行率定和验证,结果表明,WHCrop-humid模型可以较好地模拟玉米的实际蒸散发和产量,验证期叶面积指数(LAI)决定系数(R2)为0.908、归一化均方根误差(NRMSE)为0.117、威尔莫特一致性指数(WIA)为0.974,累积蒸散发R2为0.986、NRMSE为0.087、WIA为0.988,产量R2为0.984、NRMSE为0.434、WIA为0.997,模型具有在实践生产中应用于预测作物生长状态、耗水量和产量的价值。【结论】该模型可以为西南季节性干旱地下水浅埋区的作物需耗水和产量评估提供理论依据,有助于促进相似地区的水分生产力提升和农业水管理的可持续发展。
关键词:  模型;地下水;西南地区;WHCrop-humid;季节性干旱;水分生产力
DOI:10.13522/j.cnki.ggps.2024269
分类号:
基金项目:
An improved WHCrop-Humid model for simulating crop growth in seasonally arid, shallow groundwater regions of Southwest China
XING Jiacheng, HE Liuyue, XUE Jingyuan, LI Jun
1. Sichuan University, Institute for Disaster Management and Reconstruction, Chengdu 610207, China; 2. Zhejiang University, Ocean College, Zhoushan 316021, China; 3. Donghai Laboratory, Zhoushan 316100, China; 4. Sichuan University, College of Water Resources & Hydropower, Chengdu 610207, China
Abstract:
【Objective】Global population growth and increasing water scarcity pose significant challenges to food security, particularly in arid regions that rely on groundwater for irrigation. Crop models offer a valuable tool to understand crop-environment interactions, optimize water use and support agricultural decision-making. This study proposes an improved WHCrop-Humid model to simulate water use and yield of crops in regions characterized by shallow groundwater and seasonal aridity in Southwest China.【Method】The model was improved by integrating modules for water exchange between vadose zone and groundwater, surface runoff, and root development. These additions improved the representation of the influence of groundwater, surface water and environmental changes (light, temperature, and soil moisture) on crop growth. The model was calibrated and validated using maize growth data measured from 2005 to 2007 at three experimental stations in Yanting, Sichuan Province.【Result】 The improved WHCrop-Humid model accurately simulated evapotranspiration and maize yield. The determination coefficient (R2) of the model for simulating the leaf area index (LAI) was 0.908, with its associated normalized root mean square error (NRMSE) and Willmott’s index of agreement (WIA) being 0.117 and 0.974, respectively. The statistical metrics of the model for simulating cumulative evapotranspiration were R2=0.986, NRMSE=0.087, and WIA=0.988, while for yield simulation, these metrics were R2=0.984, NRMSE=0.434 and WIA=0.997. 【Conclusion】The improved WHCrop-Humid model is effective for simulating crop growth and water dynamics in shallow groundwater and seasonally dry regions. It provides a solid foundation for improving water productivity, advancing precision agriculture, and supporting sustainable water management in southwest China and similar agro-ecological zones.
Key words:  model; groundwater; Southwest China; WHCrop-humid; seasonal arid; water productivity