English
引用本文:崔赫钊,周青云,韩娜娜,等.基于HYDRUS-2D模型的滴灌土壤水氮动态模拟研究[J].灌溉排水学报,2023,42(4):57-66.
CUI Hezhao,ZHOU Qingyun,HAN Nana,et al.基于HYDRUS-2D模型的滴灌土壤水氮动态模拟研究[J].灌溉排水学报,2023,42(4):57-66.
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 905次   下载 830 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于HYDRUS-2D模型的滴灌土壤水氮动态模拟研究
崔赫钊,周青云,韩娜娜,张宝忠
1.天津农学院,天津 300392;2.中国水利水电科学研究院 流域水循环模拟与调控国家重点实验室,北京 100083
摘要:
【目的】探究河套灌区滴灌条件下玉米各生育期土壤水氮变化规律及不同灌水量对土壤硝态氮累积量的影响。【方法】通过田间试验,设置高灌水量(D1:76 mm)处理和低灌水量(D2:60 mm)处理,分析土壤含水率和土壤氮素(铵态氮和硝态氮)的动态变化规律,利用HYDRUS-2D模型进行模拟验证与预测。【结果】各处理灌水后土壤含水率呈增加趋势;而土壤铵态氮和硝态氮在灌水施肥后迅速升高,随后下降,D1处理和D2处理不同生育期0~10 cm土层铵态氮量和硝态氮量的平均降幅分别为60.0%~62.0%和40.0%~46.7%。拔节期、抽雄期和灌浆期各土层灌水后D1处理相比D2处理的土壤含水率分别增加了5.9%、8.0%和6.7%,而土壤铵态氮量和硝态氮量随着土层深度的增加而降低。不同生育期硝态氮累积量为拔节期>抽雄期>灌浆期,随着生育期的推进,硝态氮累积量呈降低趋势。土壤含水率及氮素模拟值与实测值的吻合度较高,R2、RMSE和d均介于合理范围内。【结论】玉米生育期120 mm的灌溉定额可有效降低0~60 cm土层的硝态氮累积量,可降低硝态氮在60~100 cm土层的积累量。该研究可为当地灌区合理的水肥调控及灌溉制度的制定提供参考。
关键词:  土壤含水率;铵态氮;硝态氮;数值模拟;HYDRUS-2D模型
DOI:10.13522/j.cnki.ggps.2022361
分类号:
基金项目:
Simulating Water and Nitrogen Dynamics in Drip-irrigated Soil Based on the HYDRUS-2D Model
CUI Hezhao, ZHOU Qingyun, HAN Nana, ZHANG Baozhong
1. Tianjin Agricultural University, Tianjin 300392, China; 2. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100083, China
Abstract:
【Objective】Water flow and solute transport in soil is important not only for plant acquisition of resources from soil but also for soil and water environment. In terrestrial ecosystems, they are impacted by numerous factors. The objective of this paper is to investigate the effects of drip irrigation amount on spatiotemporal change in water and nitrogen in Hetao Irrigation District, Inner Mongolia.【Method】A field experiment was conducted to measure the movement of water, nitrate and ammonium in soils, with the irrigation amount controlled at 6 mm (D1) or 60 mm (D2). The measured data was used to calibrate the HYDRUS-2D model, and the calibrated model was then used to elucidate how increasing the irrigation amount to 120 mm would affect water and nitrogen movement.【Result】Irrigation increased soil water content in all growth stages. Following irrigation and fertilization, ammonium and nitrate contents both increased rapidly and then decreased. On average, ammonium and nitrate in the 0~10 cm soil layer decreased by 60.0%~62.0% and 40.0%~46.7%, respectively, after the D1 and D2 irrigations, with the decreasing rate varying with growing stage. Compared to D2, D1 increased soil water content at jointing, heading and filling stage by 5.9%, 8.0% and 6.7%, respectively. Soil ammonium and nitrate both decreased along the soil depth. Nitrate accumulation decreased gradually when the crop grew from jointing stage to filling stage. The simulated soil water content and nitrogen agreed well with the measured data.【Conclusion】Experimental data and simulated results showed that irrigating the maize by 120 mm of water can effectively reduce accumulation of nitrate in the 0~60 cm soil layer, and that increasing irrigation frequencies can further curtail nitration accumulation in the 60~100 cm soil layer. These results provide guidance for improving irrigation and fertigation for maize production in Hetao Irrigation District.
Key words:  soil water content; ammonium nitrogen; nitrate nitrogen; numerical simulation; HYDRUS-2D model